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a b s t r a c t 

We study time scheduling problems with allowed absences as a new kind of graph coloring problem. 

One may think of a sport tournament where each player (each team) is permitted a certain number t 

of absences. We then examine how many rounds are needed to schedule the whole tournament in the 

worst case. This upper limit depends on t and on the structure of the graph G whose edges represent 

the games that have to be played, but also on whether or not the absences are announced before the 

tournament starts. Therefore, we actually have two upper limits for the number of required rounds. We 

have χ t ( G ) for pre-scheduling if all absences are pre-fixed, and we have χ t 
OL (G ) for on-line scheduling if 

we have to stay flexible and deal with absences when they occur. We conjecture that χ t (G ) = �(G ) + 2 t

and that χ t 
OL (G ) = χ ′ (G ) + 2 t. The first conjecture is stronger than the Total Coloring Conjecture while the 

second is weaker than the On-Line List Edge Coloring Conjecture. Our conjectures hold for all bipartite 

graphs. For complete graphs, we prove them partially. Lower and upper bounds to χ t ( G ) and χ t 
OL (G ) for 

general multigraphs G are established, too. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

There are many different types of scheduling problems. Some of 

them arise in pure mathematics, but many emerge directly out of 

real-life needs. For example, good schedules are needed for the as- 

signment of channels or frequencies in communication networks. 

They are also needed for the allocation of venues and time slots 

to the teams in sport competitions. Most of these problems can 

be studied as graph coloring problems, either edge or vertex col- 

oring problems. The graph coloring rule that adjacent edges (resp. 

vertices) should receive different colors then reflects the most ba- 

sic requirement of conflict avoidance, the avoidance of overlapping 

appointments in timetables. Usually, however, there are additional 

constraints reflecting additional requirements and wishes. For in- 

stance, in sport league scheduling, one wants to avoid that a team 

plays many consecutive games in its hometown. Simultaneously, 

one wants to minimize the travel distances of the teams. Moreover, 

TV networks may want the most attractive games to be sched- 

uled at certain dates. There is an economic interest behind many 

scheduling requirements. Therefore, scheduling has turned into a 

research area of its own. Usually, this diverse area is studied in 

operations research and computer science. There is a vast litera- 

ture, see e.g. Drexl and Knust. (2007) , Kendall, Knust, Ribeiro, and 

Urrutia (2010) , Lewis and Thompson (2011) , and Rasmussen and 

Trick (2008) , to mention but a few. On the web page ( Knust, 2014 ), 
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many references on various topics in sports scheduling are classi- 

fied according to different aspects. For mathematical basics about 

the theory of graphs and multigraphs (graphs which may have 

multiple edges between any two vertices), different coloring con- 

cepts and notational foundations, the reader may consult Diestel 

(2010) , Fiorini and Wilson (1977) , Jensen and Toft (1995) , and Yap 

(1996) . 

In the present paper, we examine edge colorings of multigraphs 

with a new kind of constraint related to absences. The underly- 

ing research should mainly be of interest for people working in 

the theory of graph colorings. We hope, however, that our results 

and conjectures will also attract interest in the sport scheduling 

community. In fact, our research is motivated by time scheduling 

problems as they arise in sport tournaments or in the scheduling 

of timetables at schools. Typically, timetables are set up under the 

assumption that everything goes fine and all participants are avail- 

able without absences. In real life, however, things often do not go 

as planned. People get sick or otherwise indisposed. In this case, 

the best plans can be thrown over. Therefore, it is important to 

see how one can deal with absences. Apparently, this problem was 

not studied in literature yet, at least not in any systematic way. 

The closest mathematical concepts, so far, were list edge coloring 

( Borodin, Kostochka, & Woodall, 1997; Galvin, 1995; Häggkvist & 

Janssen, 1997 ), on-line list edge coloring ( Schauz, 2008; 2014 ) and 

total coloring ( Yap, 1996 ). Our results heavily rely on the findings in 

these fields, as we will see. For the general discussion, however, we 

need to have mathematical concepts that model time scheduling 

with absences even closer. In order to find suitable definitions, we 
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Fig. 1. Optimal schedule for the indicated pre-fixed absences. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

Fig. 2. Worst possible unannounced absences after two completed rounds. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.) 

first need to distinguishing two kinds of absences, pre-announced 

pre-fixed absences and unannounced absences . The following exam- 

ple, with its two parts, illustrates the two types of absences and 

their impact on the number of rounds that is needed to accommo- 

date all games of a tournament. It also explains the graph-theoretic 

model that we use. 

Example 1.1. Part 1: Three chess players A , B , C want to play three 

chess games, the game A − B, the game A − C and the game B − C. 

Each player can play at most one game per round. Without ab- 

sences, this can be done in three rounds. One simply has to play 

one game per round. 

If each player is allowed to miss one round, one round that 

he has to pre-announce and prefix, then we may need to arrange 

one additional round. If player A does not come to the first round, 

player B does not come to the second round and player C does 

not come to the third round, then three rounds are still enough. 

However, in all cases in which at least two players miss simul- 

taneously one of the first three rounds, a fourth round has to be 

arranged. The case where player A and player B cancel the third 

round and player C cancels the fourth round (whether or not the 

fourth round needs to take place) is illustrated in the assignment 

of exponents in Fig. 1 . Here, a fourth round can actually not be 

avoided. For the given absences, four rounds are the minimum, 

and the presented schedule is optimal in that sense. Next to the 

time-table, a corresponding graph coloring is also presented. This 

graph-theoretic model shows players as vertices whose color and 

number indicate the round in which a player is absent. Games are 

displayed as edges whose color and number indicate the round in 

which the game shall take place. One can show that four rounds 

are always enough. For pre-fixed single absences, four rounds is 

the upper limit. 

Part 2: The situation gets worse if the players do not have to 

announce their absences in advance and simply do not show up to 

one round. In this case, it could happen that all players come to 

the first and second round. After these two rounds there is still at 

least one game X − Y left over, no matter how the first two rounds 

are used. So, two players X , Y ∈ { A , B , C } did not play yet. Now, 

player X may not show up to the third round and player Y may 

not show up to fourth round. For instance, if the game A − B was 

not played in the first two rounds ( { X, Y } = { A, B } ), this could look 

as in Fig. 2 . In this case, a fifth round has to be arranged to accom- 

modate the game X − Y. Since at that point, player X and player Y 

have used up their allowed absences, they actually will attend the 

fifth round and the tournament can be concluded there. One can 

show that five rounds are always enough. For unannounced single 

absences, five rounds is the upper limit. 

This example shows that for unannounced absences more 

rounds might be needed to accommodate all games, compared 

to the situation with pre-fixed absences. Out of this observation, 

we address two problems. Pre-scheduling with pre-announced pre- 

fixed absences only, and on-line scheduling , where all absences are 

unannounced and just happen on the fly. We provide upper and 

lower bounds on the number of rounds that is needed to com- 

plete all planned games of a tournament. Of course, this can only 

be done with some information about the absences. If one team is 

absent all the time, we never will finish. Therefore, it seems natu- 

ral to restrict the number of absences by some limit. We may per- 

mit each player (team) only a certain number t of absences. We 

may also permit different players v different numbers t(v ) of ab- 

sences. Apart from that, any choice of matches between the players 

is allowed. These matches form the edges of a multigraph G . With 

these notations and parameters, the best general upper bound for 

the number of rounds is defined as a new kind of chromatic index. 

We call this index t-avoiding chromatic index χ t ( G ), respectively on- 

line t-avoiding chromatic index χ t 
OL 

(G ) – one for pre-fixed and one 

for unannounced absences. These numbers are the upper limits for 

the number of rounds in an optimal scheduling. This means, if we 

know the number χ t ( G ), resp. χ t 
OL 

(G ) , then we know the precise 

number of required rounds if the absences appear as unfortunately 

as possible, within the given frequency limitations t(v ) . 
There is also a game-theoretic description of our scheduling 

problem and the numbers χ t ( G ) and χ t 
OL 

(G ) . We will not use this 

approach later on, but we briefly describe it here, as it clarifies 

things. The whole scheduling process can be seen as a meta-game 

between two meta-players, an Organizer and an Indisposer . While 

Organizer is trying to organize a tournament G within a certain 

number χ of rounds, Indisposer is trying to prevent that by mak- 

ing the players up to t many times indisposed. There are two ver- 

sions of that game, one for pre-announced absences and one for 

unannounced absences. In the first version, Indisposer has only one 

move, in which he determines all absences. He may enter them 

into a tabula like the one in Fig. 1 . Afterwards, Organizer has to 

complete the whole schedule in one move by completing the tab- 

ula. In the second version, the only difference is that the tabula 

is filled column by column. Each round, Indisposer indicates ab- 

sences in one column, and then Organizer completes that column. 

This could go as in Fig. 2 where χ = 4 columns are not enough 

to finish the complete tournament G = K 3 if t = 1 many absences 

are available in each row. In this game-theoretic setting, the num- 

ber χ t ( G ), resp. χ t 
OL 

(G ) , is the smallest number of columns χ for 

which a winning strategy for Organizer exists. 

We can calculate the numbers χ t ( G ) and χ t 
OL 

(G ) in several 

cases. In particular, we know χ t ( B ) and χ t 
OL 

(B ) for all bipartite 

multigraphs B and constant or blockwise constant t (with t being 
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