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a b s t r a c t 

Consider a directed graph G = (V, A ) with a set of nodes V and a set of arcs A , and let c u v denote the 

length of an arc u v ∈ A . Given two nodes s and t of V , we are interested in the problem of determining a 

shortest-path from s to t in G that must visit only once all nodes of a given set P ⊆ V − { s, t} . This problem 

is NP-hard for P = V − { s, t} . In this paper, we develop three new compact formulations for this problem. 

The first one is based on the spanning tree polytope. The second model is a primal-dual mixed integer 

model presenting a small number of variables and constraints; and the last one is obtained from a flow- 

based compact model for the Steiner traveling salesman problem (TSP). Numerical experiments indicate 

that the second compact model allows the efficient solution of randomly generated and benchmark (from 

the TSPLIB) instances of the problem with hundreds of nodes. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The elementary (s − P − t) -shortest-path problem in a directed 

graph G = (V, A ) with set of nodes V and set of weighted arcs A 

consists in finding a path of minimum length between an origin 

node s ∈ V and a destination node t ∈ V that visits only once all 

nodes of a given set P ⊆ V − { s, t} . We know that for P = V − { s, t} 
the problem is equivalent to finding a Hamiltonian path of min- 

imum length in G , which is NP-hard. In a brief literature review, 

we find only a few publications on this problem with such a struc- 

ture, e.g. Dreyfus (1969) , Ibaraki (1973) , Saksena and Kumar (1966) . 

However, we can find related NP-hard variants of this problem. In- 

deed, the Steiner Traveling Salesman Problem (STSP) in Letchford, 

Nasiri, and Theis (2013) asks for non-elementary tours visiting a 

given set of nodes as feasible solutions (i.e. tours where nodes can 

be visited more than once in a feasible solution). 

Fig. 1 shows an example of a digraph G and its arc costs. Sup- 

pose we want to determine a (1 − { 2 } − 4) -shortest-path for this 

digraph considering two situations: (i) a path based on the STSP 

idea of Letchford et al. (2013) ; and (ii) an elementary path as in 

Dreyfus (1969) . In this figure, we see the difference between the 

optimal solution structures for both situations. While the optimal 

STSP-based (1 − { 2 } − 4) -shortest-path is {(1, 2), (2, 1), (1, 4)} and 

has cost equal to 12 (observe here that node 1 is visited twice), 

the elementary (1 − { 2 } − 4) -shortest-path is {(1, 2), (2, 3), (3, 4)} 
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and has cost equal to 24. It is not difficult to show that an STSP- 

based (s − P − t) -shortest-path gives a lower bound for the solu- 

tion of the elementary (s − P − t) -shortest-path problem. 

It seems that the first (and erroneous, as showed by Dreyfus 

(1969) ) algorithm for the (s − P − t) -shortest-path problem is due 

to Saksena and Kumar (1966) . Dreyfus (1969) proposes to solve 

the problem by reducing it to an instance of the traveling sales- 

man problem. Ibaraki (1973) introduces an exponential dynamic 

programming algorithm and a branch-and-bound (B&B) method. 

Ibaraki’s model used in the B&B algorithm is defined only with 

continuous variables. His model is equivalent to the well-known 

flow formulation of the classic shortest-path problem. Thus, re- 

laxed node solutions in the B&B tree are integer and present at 

least one cycle when the node solution is not an elementary path 

(see Ibaraki, 1973 ). The idea behind Ibaraki’s B&B algorithm is to 

fix at zero (one at a time) an arc of a given cycle C of a B&B 

node solution as branching rule to create | C | new B&B subprob- 

lems. This means possibly enumerating all cycles in G in a B&B 

tree, because relaxed solutions of the classical flow-based model 

in Ibaraki (1973) are known to be very weak for this problem. 

Here, we adapt the cycle elimination constraints of the com- 

pact extended formulation for the spanning tree polytope of an 

undirected graph (see Conforti, Cornuéjols, and Zambelli, 2010; 

Martin, 1991; Yannakakis, 1991 ) to deal with the oriented arcs of 

the (s − P − t) -shortest-path problem. In fact, we show that the 

use of Martin’s formulation is not straightforward for oriented 

graphs. Moreover, we explore a nice property of elementary paths 

to obtain a primal-dual based mixed integer compact extended 
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Fig. 1. A digraph G = ({ 1 , 2 , 3 , 4 } , { (1 , 2) , (1 , 4) , (2 , 1) , (2 , 3) , (3 , 2) , (3 , 4) } ) and a 

sub-digraph G ′ of G . The arc lengths are reported near each arc. 

formulation. The idea is to characterize feasible solutions by link- 

ing primal and dual variables in a unique set of constraints 

exploring that property. We do this without implementing the 

well-known complementary slackness optimality condition. Such a 

model has a dual flow-based structure more interesting than the 

one we derive from the STSP model of Letchford et al. (2013) . The 

new primal-dual model seems to present the smallest number of 

variables and constraints we can propose to solve this problem. We 

show the efficiency of our proposed models by performing numeri- 

cal experiments on randomly generated and on asymmetric TSPLIB 

instances adapted accordingly. To the best of our knowledge, this is 

the first work exploring these techniques for solving the elemen- 

tary (s − P − t) -shortest-path problem. 

2. Problem formulation 

Consider G = (V, A ) a directed graph with a set of nodes V and 

a set of weighted arcs A . Let c i j ∈ R + represent the length of arc 

ij ∈ A . The problem is to determine an elementary path in G of 

minimum length between nodes s and t of V that visits a given set 

of nodes P ⊆ V − { s, t} . 
We represent an (s − P − t) -path in G by a vector x ∈ {0, 1} | A | , 

where x i j = 1 if ij belongs to the (s − P − t) -path, and x i j = 0 , oth- 

erwise. Thus, a mathematical model for this problem is 

(Q ) min 

x ∈{ 0 , 1 } | A | 
∑ 

i j∈ A 
c i j x i j (1) 

s.t. 
∑ 

i | i v ∈ A 
x i v −

∑ 

j | v j ∈ A 
x v j = 

{ −1 , if v = s 
1 , if v = t 
0 , otherwise 

∀ v ∈ V (2) 

∑ 

i | i v ∈ A 
x i v = 1 , ∀ v ∈ P (3) 

∑ 

i j∈ A (S) 

x i j ≤ | S| − 1 , ∀ S ⊂ V : | S| ≥ 2 (4) 

where A ( S ) represents the set of arcs with both extremities in S . 

Constraints (2) define the existence of an (s − t) -path in G and 

constraints (3) impose that each node v ∈ P must be visited by im- 

posing that one arc enters v . Constraints (4) avoid the existence of 

cycles in any solution. 

Now let ( Q ) LR represent hereafter the linear relaxation of model 

( Q ), defined by (1) –(4) , where we replace x ∈ {0, 1} | A | in (1) by 0 

≤ x ≤ 1 . 

Observation 1. If arc costs are positive, then dropping con- 

straints (4) in model ( Q ) can lead to the occurrence of cycles con- 

taining at least one visiting node. Indeed, in Fig. 1 , the sub-digraph 

G 

′ is the solution to the model defined by (1) , (2) , and (3) with re- 

spect to the digraph G . 

Proposition 1. The following constraints are valid for ( Q ) ∑ 

i | is ∈ A 
x is = 0 , 

∑ 

j | t j ∈ A 

x t j = 0 ; (5) 

Fig. 2. A digraph with its arc lengths. An elementary (0 − { 9 , 10 , 11 } − 19) -shortest- 

path is {(0, 12), (12, 11), (11, 10), (10, 14), (14, 9), (9, 2), (2, 19)} of cost 114. 

Fig. 3. The continuous optimal solution of value 95 for ( Q ) LR with respect to a 

(0 − { 9 , 10 , 11 } − 19) -shortest-path for the digraph in Fig. 2 . Values near each arc 

correspond to the decision variables x associated with the arcs in the solution. 

Fig. 4. New optimal solution of value 104 with respect to a (0 − { 9 , 10 , 11 } − 19) - 

shortest-path of the digraph in Fig. 2 for ((Q ) 
⋂ 

(5)) LR . 

Proof. In any elementary (s − P − t) -path, no arc can enter s or 

leave t . �

As an example of Proposition 1 , consider the digraph in Fig. 2 . 

The optimal solution of ( Q ) LR for a (0 − { 9 , 10 , 11 } − 19) -shortest- 

path in this digraph is given in Fig. 3 and has a value equal to 95. 

When we add constraints (5) to ( Q ) LR , we obtain a new relaxed 

solution reported in Fig. 4 of value 104. 

Proposition 2. The following constraints strengthen ((Q ) 
⋂ 

(5)) LR . ∑ 

i | i v ∈ A 
x i v ≤ 1 , ∀ v ∈ V − P − { s, t} (6) 
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