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a b s t r a c t 

The maximally diverse grouping problem (MDGP) is to partition the vertices of an edge-weighted and 

undirected complete graph into m groups such that the total weight of the groups is maximized subject 

to some group size constraints. MDGP is a NP-hard combinatorial problem with a number of relevant 

applications. In this paper, we present an innovative heuristic algorithm called iterated maxima search 

(IMS) algorithm for solving MDGP. The proposed approach employs a maxima search procedure that in- 

tegrates organically an efficient local optimization method and a weak perturbation operator to reinforce 

the intensification of the search and a strong perturbation operator to diversify the search. Extensive 

experiments on five sets of 500 MDGP benchmark instances of the literature show that IMS competes 

favorably with the state-of-the-art algorithms. We provide additional experiments to shed light on the 

rationality of the proposed algorithm and investigate the role of the key ingredients. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Given an edge-weighted and undirected complete graph G = 

(V, E, D ) , where V = { 1 , 2 , . . . , n } is the set of n vertices, E = {{ i, j} : 
i, j ∈ V, i � = j} is the set of n × (n − 1) / 2 edges, and D = { d i j ≥ 0 : 

{ i, j} ∈ E} represents the set of non-negative edge weights, the 

maximally diverse grouping problem (MDGP for short) is to parti- 

tion the vertex set V into m disjoint subsets or groups such that the 

size of each group g lies in a given interval [ a g , b g ] ( g = 1 , 2 , . . . , m ) 

while maximizing the sum of the edge weights of the m groups. 

Here, a vertex v ∈ V is usually called an element, an edge weight d ij 
∈ D is called the diversity between elements i and j , while a g and 

b g are respectively called the lower and upper limits (or bounds) 

of the size of group g . 

MDGP can be expressed as a quadratic integer program with bi- 

nary variables x ig that take the value of 1 if element i is in group 

g and 0 otherwise ( Gallego, Laguna, Martí, & Duarte, 2013; Ro- 

driguez, Lozano, García-Martínez, & González-Barrera, 2013 ). 

Maximize 

m ∑ 

g=1 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

d i j x ig x jg (1) 

∗ Corresponding author at: LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 

Angers, France. Tel.: +33241735076; fax: +33241735073. 

E-mail addresses: laixiangjing@gmail.com (X. Lai), hao@info.univ-angers.fr , jin- 

kao.hao@univ-angers.fr (J.-K. Hao). 

Subject to 

m ∑ 

g=1 

x ig = 1 , i = 1 , 2 , . . . , n (2) 

a g ≤
n ∑ 

i =1 

x ig ≤ b g , g = 1 , 2 , . . . , m (3) 

x ig ∈ { 0 , 1 } , i = 1 , 2 , . . . , n ; g = 1 , 2 , . . . , m (4) 

where the set of constraints (2) guarantees that each element is 

located in exactly one group and the set of constraints (3) forces 

the size of group g is at least a g and at most b g . 

MDGP belongs to the category of vertex-capacitated cluster- 

ing problems which are a type of extensively studied combina- 

torial search problems and can further be divided into the max- 

clustering problem and min-clustering problem ( Ferreira, Martin, 

Souza, Weismantel, & Wolsey, 1996, 1998; Johnson, Mehrotra, & 

Nemhauser, 1993; Özsoy & Labbé, 2010; Wang, Alidaee, Glover, & 

Kochenberger, 2006 ). In short, the max-clustering (min-clustering) 

problem is to partition the vertices of an undirect graph G = (V, E) 

with edge and vertex weights into m mutually disjoint subsets 

(groups or clusters) such that the sum of the vertex weights of the 

subsets is bounded from below by a and from above by b while 

maximizing (minimizing) the sum of the weights of the edges in- 

side the subsets ( Johnson et al., 1993 ). 

In addition to its theoretical signification as a typical NP-hard 

problem, MDGP has a variety of real-world applications, like as- 

signment of students to groups ( Johnes, 2015; Krass & Ovchin- 

nikov, 2010; Yeoh & Nor, 2011 ), creation of peer review groups 
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( Chen, Fan, Ma, & Zeng, 2011 ), VLSI design ( Weitz & Lakshmi- 

narayan, 1997 ), storage allocation of large programs onto paged 

memory, and creation of diverse groups in companies so that peo- 

ple from different backgrounds work together ( Bhadury, Mighty, 

& Damar, 20 0 0 ). For a review of possible applications of MDGP, 

the readers are referred to recent papers like Gallego et al. 

(2013) , Palubeckis, Ostreika, and Rubliauskas (2015) , Rodriguez 

et al. (2013) , Uroševi ́c (2014) . 

Given the practical importance and high computational com- 

plexity of MDGP, a number of exact and heuristic algorithms 

have been proposed in the literature. One of the most repre- 

sentative exact algorithm for MDGP is the column generation 

approach presented in Johnson et al. (1993) . Nevertheless, local 

search or evolutionary heuristics remain the dominant approach 

in the literature to find high-quality sub-optimal solutions for 

large graphs. Examples of local search heuristics includes mul- 

tistart algorithm ( Arani & Lofti, 1989 ), Weitz-Jelassi (WJ) algo- 

rithm ( Weitz & Jelassi, 1992 ), Lotfi-Cerveny-Weitz (LCW) algorithm 

( Weitz & Lakshminarayan, 1998 ), T-LCW method based on LCW 

and tabu search ( Gallego et al., 2013 ), tabu search with strategic 

oscillation (TS-SO) ( Gallego et al., 2013 ), multistart simulated an- 

nealing (MSA) ( Palubeckis, Kar ̌ciauskas, & Riškus, 2011 ), variable 

neighborhood search (VNS) ( Palubeckis et al., 2011 ), general vari- 

able neighborhood search (GVNS) ( Uroševi ́c, 2014 ), skewed general 

variable neighborhood search (SGVNS) ( Brimberg, Mladenovi ́c, & 

Uroševi ́c, 2015 ), iterated tabu search (ITS) ( Palubeckis et al., 2015 ) 

and several graph theoretical heuristics ( Feo & Khellaf, 1990 ). The 

population-based evolutionary approach includes hybrid genetic 

algorithm (LSGA) ( Fan, Chen, Ma, & Zeng, 2010 ), hybrid grouping 

genetic algorithm ( Chen et al., 2011 ), hybrid steady-state genetic 

algorithm (HGA) ( Palubeckis et al., 2011 ), artificial bee colony (ABC) 

algorithm ( Rodriguez et al., 2013 ), and constructive genetic algo- 

rithm ( Lorena & Antonio, 2001 ). According to the computational 

results reported on the MDGP benchmarks, the heuristics T-LCW, 

TS-SO, HGA, MSA, VNS, ABC, GVNS, ITS, and SGVNS achieved high 

performances at the time they were published. 

In this paper, we propose an effective heuristic called the iter- 

ated maxima search (IMS) algorithm for solving MDGP. IMS follows 

and extends the iterated local search framework ( Lourenco, Mar- 

tin, & Stützle, 2003 ). Though IMS shares ideas from breakout local 

search ( Benlic & Hao, 2013a; 2013b ) and three-phase local search 

( Fu & Hao, 2015 ), it distinguishes itself from these approaches by 

three specific features: its local search procedure (to improve the 

incumbent solution), the maxima search scheme (to locate other 

local optima within a limited region of the search space) and its 

perturbation operator (to modify greatly the incumbent solution). 

In addition, IMS employs a randomized procedure for initial so- 

lution generation. When the proposed algorithm was assessed on 

five sets of 500 benchmark instances (120 ≤ n ≤ 30 0 0) com- 

monly used in the literature, the computational results showed 

that the algorithm achieves highly competitive results compared 

to the state-of-the-art algorithms especially on the large-sized in- 

stances. 

In Section 2 , we describe the components of the proposed al- 

gorithm. Section 3 is dedicated to extensive computational assess- 

ments based on the commonly used benchmarks with respect to 

the top performing algorithms from the literature. In Section 4 , the 

important components of the proposed algorithm are analyzed and 

discussed. Conclusions are provided in the last Section. 

2. Iterated maxima search algorithm for MDGP 

The proposed iterated maxima search (IMS) algorithm can 

be considered as an extended iterated local search algorithm 

( Lourenco et al., 2003 ) and shares ideas from breakout local 

search ( Benlic & Hao, 2013a; 2013b ) and three-phase local search 

Algorithm 1: Main framework of iterated maxima search 

method for MDGP. 

Input : Instance I, the depth of maxima search ( α), the 

strength of strong perturbation ( ηs ), the cutoff time 

( t max ) 

Output : The best solution s ∗ found 

1 begin 

2 s ← Initial Sol ution (I) /* Sections 2.3 and 2.4 */ 

3 s ∗ ← s 

4 while Time() ≤ t max do 

5 s ← MaximaSearch (s, α) /* Section 2.5 */ 

6 if f (s ) > f (s ∗) then 

7 s ∗ ← s 

8 end 

9 s ← St rongPert urbat ion (s, ηs ) /* Section 2.6 */ 

10 end 

11 return s ∗

12 end 

( Fu & Hao, 2015 ) (see Section 2.7 for more discussions). IMS is 

composed of four basic procedures: solution initialization, local 

search, weak perturbation, and strong perturbation. The basic idea 

of the IMS algorithm is to provide the search algorithm with a de- 

sirable tradeoff between intensification and diversification. This is 

achieved by iterating the maxima search procedure (local search 

combined with weak perturbation to explore a limited region 

around a locally optimal solution) followed by the strong perturba- 

tion procedure (to displace the search to a distant region by chang- 

ing strongly the attained local optimum). 

2.1. General procedure 

The IMS algorithm ( Algorithm 1 ) starts from a feasible initial 

solution ( Section 2.2 ) that is obtained with a randomized construc- 

tion procedure ( Section 2.3 ). Then it repeats a number of iterations 

until a cutoff time is reached. At each iteration, the incumbent so- 

lution s is improved by the maxima search procedure ( Sections 2.4 

and 2.5 ) and then perturbed by the strong perturbation procedure 

( Sections 2.6 ). The best solution found ( s ∗) is updated whenever 

it is needed and finally returned as the output at the end of the 

IMS algorithm. In the rest of this section, we describe the different 

components of the proposed algorithm. 

2.2. Search space, fitness function and solution representation 

For a given MDGP instance G = (V, E) with its edge diversity 

matrix D = [ d i j ] n ×n and the number m of groups, the search space 

� explored by the IMS algorithm contains all partitions of the el- 

ements of V into m groups such that the size of each group lies 

between its lower and upper limits. In other words, our IMS algo- 

rithm visits only feasible solutions. 

Formally, let P : V → { 1 , . . . , m } be a partition function of the 

n elements of V to m groups. For each group g ∈ { 1 , . . . , m } with 

lower and upper limits a g and b g , let P g = { i ∈ V : P (i ) = g} (i.e., P g 
is the set of elements of group g ). Then the search space is given 

by: 

� = { P : ∀ g ∈ { 1 , . . . , m } , a g ≤ | P g | ≤ b g } . 
For any candidate solution s = { P 1 , P 2 , . . . , P m 

} of �, its quality 

or fitness is given by the objective value f ( s ): 

f (s ) = 

m ∑ 

g=1 

∑ 

i, j∈ P g ,i< j 

d i j (5) 
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