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a b s t r a c t 

We compute first- and second-order sensitivities of functions simulated by rejection techniques. The 

methodology is to perform a measure change on every acceptance test, so that the pathwise discontinu- 

ities resulting from the rejection decisions are removed. The change of measure is chosen to be optimal 

in terms of minimizing variances of the likelihood ratio terms. Applications are presented for computing 

Greeks of equity options with certain L ́e vy-driven underlyings and to finding sensitivities of performance 

measures in queueing systems. The numerical results demonstrate the efficacy and speed of the method. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Simulation is a widely-used tool in Operations Research. It can 

be viewed as a way to compute statistics of complex systems 

evolving under randomness or as a methodology for evaluating 

high-dimensional integrals. However, it is not enough just to com- 

pute values, for many applications the sensitivities of these val- 

ues with respect to model inputs is equally important. When the 

parameters are estimated, knowing how inaccuracy in inputs af- 

fects the accuracy of outputs is crucial for decision making. When 

the parameters are known precisely but themselves random, sen- 

sitivities are an essential tool for risk assessment and designing 

risk mitigation strategies. This is particularly the case when us- 

ing Monte Carlo simulation to price complex financial derivative 

products. For many OR applications, the objective is optimize some 

quantity as a function of the inputs, this is facilitated by good es- 

timates of not just the gradient but also of the Hessian. 

The simplest and most obvious approach to computing sensi- 

tivities is to bump the input parameters and see how the output 

changes. This method is generally called finite differencing (FD). 

It has the defects of bias and requiring one simulation per sensi- 

tivity. When the function, F , mapping the inputs to the outputs is 

discontinuous, FD yields very high variances rendering it unusable. 

When F is sufficiently smooth, analysis of the small bump limit 

yields the pathwise method, or infinitesimal perturbation analysis 
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(IPA), which essentially consists of differentiating the value along 

each path as a function of the inputs. The pathwise method when 

applicable is generally very effective and low variance. (See eg 

Glasserman, 2004 .) There has therefore been much effort devoted 

to addressing the problem of how to adapt it to cope with discon- 

tinuities in specific cases. For example, Hong and Liu (2011) write 

the objective function as an indicator function times a smooth 

function and then approximate the delta distribution that arises 

from differentiation by a Gaussian. Their approach results in bias, 

however, and the asymptotically unbiased method has conver- 

gence of order below 1/2. Glasserman (1992) suggests another 

approach that avoids differentiating discontinuities via multiplying 

by a function vanishing on them. Hong and Liu (2010) present an 

interesting approach to computing probabilities that an evolved 

quantity lies in a given set when the simulation algorithm is 

continuous. 

A widely-used intrinsically-discontinuous simulation method is 

rejection sampling and there has been surprisingly little work on 

how to implement the pathwise method for it. Rejection tech- 

niques such as the acceptance–rejection method ( Neumann, 1951 ), 

the ratio-of-uniforms method ( Kinderman & Monahan, 1977 ) and 

the transformations-with-multiple-root method ( Michael, Schu- 

cany, & Haas, 1976 ), are powerful alternatives for simulating ran- 

dom variates when the conventional inverse-transform method 

is not applicable. For example, various rejection methods are in- 

troduced to simulate the gamma and inverse-gaussian variates, 

which are essential for pricing exotic derivatives with the variance- 

gamma (VG) and the normal-inverse-gaussian (NIG) stock pro- 

cess. Furthermore, in the study of queuing systems, the rejection 
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method “thinning” ( Lewis & Shedler, 1979 ) is commonly used for 

simulating non-homogeneous poisson arrival processes. The funda- 

mental issue for all these methods is that a small change in param- 

eter values may alter the decision at each acceptance test and so 

render a very different outcome for a given sample. None of the 

adaptations of the pathwise method discussed above appear to be 

applicable to rejection sampling. 

One alternative approach is to differentiate the underlying den- 

sity and this yields the likelihood ratio method (LR). However, this 

requires easy computation of the density and also can lead to 

high variances so pathwise techniques are preferable when avail- 

able. For many cases where rejection sampling is natural, the den- 

sity is intractable. Another possible approach related to LR is that 

of measure-valued differentiation (MVD) which involves differen- 

tiating the underlying measure and so avoids simulation discon- 

tinuity problems. In particular, in recent work Volk-Makarewicz 

(2014) considers a similar problem for derivatives prices using the 

Variance Gamma process but does not compute sensitivities of the 

shape parameter for the gamma random variable. There does not 

seem to have been any work on the NIG process using MVD. Other 

related approaches are the vibrato technique of Giles (2009) and 

Malliavin techniques ( Benhamou, 2003 ). Whilst all of these ap- 

proaches are interesting, none of them are obviously adaptable to 

the case of rejection sampling. 

An important aspect of pathwise methods is that the simula- 

tion algorithm is also differentiated. This implies a dependency 

on its choice. This can cause issues both in terms of applicability 

when the output of the algorithm is not continuous, and also of 

variance since the estimates depend on the derivatives of terms in 

the algorithm. Joshi and Zhu (2014) extended the Optimal Partial 

Proxy method ( Chan & Joshi, 2015 ) to computing Hessians for 

financial products with discontinuous payoffs (HOPP). Here, we 

adapt the idea of Joshi and Zhu (2014) and introduce a change of 

measure function at each acceptance test, so the small bump in 

the parameter of interest does not alter the acceptance–rejection 

decision rendering the pathwise method applicable at the cost of 

a likelihood ratio term which we show is in a certain sense of 

minimal variance. 

Practical problems in OR often involve multiple parameters of 

interest. This leads to another obstacle to calculating the Hessian, 

the associated computational effort. Efficient automatic simulation 

algorithms for computing Hessians have long been of interest to 

the community, we refer the readers to Griewank and Walter 

(2008) for an overview. Here, we adopt the Algorithmic Hessian 

approach introduced by Joshi and Yang (2011) for convenience. 

Their methodology is to decompose the evolution into elementary 

operations, then initialize the Hessian and gradient at the terminal 

time point and update them in a backward fashion with one el- 

ementary operation each step. We name the simulation algorithm 

resulting from combining our discontinuity removed rejection 

algorithm with the Joshi–Yang method, the Optimal Sensitivities 

for Rejection Sampling (OSRS) method. 

We emphasize the widespread applicability of OSRS: it does 

not require the simulation algorithm nor the payoff function to be 

continuous; the marginal density is not explicitly needed; and the 

measure changes are benign and result in much smaller variances 

than LR when both are applicable. We present applications to 

both financial engineering and queuing systems to illustrate the 

method’s breadth. We present results for risk management of call 

and barrier options using VG and NIG processes: we are able to 

compute first- and second-order sensitivities to all parameters 

including the Gamma process’s shape parameter. In addition, 

we consider queueing systems that fail to satisfy the conditions 

in ( Glasserman, 1991 ) for the application of IPA. We present 

sensitivities of such discrete-event systems with respect to both 

distributional and structural parameters. 

The remaining sections of this paper are organized as follows. 

The basic idea of OSRS is presented in Section 2 . In Section 3 , we 

apply our OSRS to computing sensitivities of call options and bar- 

rier options with L ́e vy-driven underlyings. In Section 4 , we apply 

the model to compute parameter sensitivities of the average time 

spent of a finite-time horizon M t | M |1 queue, where the interarrival 

time is simulated by the thinning technique. 

We thank the editor and some anonymous referees for their de- 

tailed comments on an earlier version of this paper. 

2. The basic idea of OSRS 

In this section, we provide a general framework for computing 

sensitivities of expectations of performance measures calculated 

via rejection techniques. Computing sensitivities is considered par- 

ticularly hard when the underlying state variables can only be ob- 

tained via rejection sampling. The LR method is problematic since 

the underlying distributions for such cases do not have known and 

tractable probability density functions, and it has a tendency to 

produce high variances. The FD method produces biased estimates 

and it is not feasible for rejection sampling in that a small bump in 

the parameter of interest can cause a switch between acceptance 

and rejection, thus a significant change in the simulated outcome. 

The pathwise method as the limit case of the FD method cannot be 

applied here due to this inherent discontinuity of the algorithm. 

2.1. Definitions and notations 

Before presenting the basic idea of OSRS method, we first define 

a new class of functions. 

Definition 1. Let ˆ C 2 denote the class of functions that 

• have Lipschitz continuous first-order derivatives everywhere, 
• are twice differentiable almost surely. 

In the following sections, we construct alternative ˆ C 2 algorithms 

for computing performance measures, which consequently admit 

the application of the pathwise method to computing first- and 

second-order derivatives ( Glasserman, 2004 ). 

To fix the notations, let 

• θ ∈ R 

m denote the parameters of interest within a small neigh- 

bourhood � about the base point θ0 , 
• V j denote the standard uniforms for generating the j th simu- 

lated outcome and s ( θ , V j ) denote the algorithm for generating 

an outcome, 
• V D 

j 
denote the j th decision standard-uniform variate, 

• V denote the standard uniforms for generating a random variate 

from the target distribution including both V j ’s and V D 
j 

’s, 

• N ( θ , V ) denote the number of simulated outcomes up to and 

including the accepted one, 
• S ( θ , V ) denote the rejection algorithm for turning θ and V into 

the target random variable, so that 

S(θ, V ) = s (θ, V N(θ,V ) ) . (2.1) 

The value N(θ, V ) ∈ N is itself a discrete random variable which 

depends on the parameter of interest. For example, in acceptance–

rejection sampling, each outcome is generated from a related dis- 

tribution with density function f ∗, and accepted as a random vari- 

able from the target distribution with density function f , if an in- 

dependent decision variate, V D 
j 
, satisfies, 

V 

D 
j ≤

f 
(
s (θ, V j ) 

)
c(θ ) f ∗

(
s (θ, V j ) 

) , 

for c ( θ ) which depends on the distributional parameters. The prob- 

ability of acceptance is 1 
c(θ ) 

, and the number of iterations needed 

follows a geometric distribution. 
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