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a b s t r a c t 

For a credit portfolio, we are often interested in modelling the migration of accounts between credit 

grades over time. For a large retail portfolio, data on credit grade migration may be available only in 

the form of a series of (typically monthly) population transition matrices representing the gross flow of 

accounts between each pair of credit grades in the given time period. The challenge is to model the tran- 

sition process on the basis of these aggregate flow matrices. Each row of an observed transition matrix 

represents a sample from an ordinal probability distribution. Following Malik and Thomas (2012), Feng, 

Gourieroux, and Jasiak (2008) and McNeil and Wendin (2006), we assume a cumulative link model for 

these ordinal distributions. Common choices of link function are based on the normal (probit link) or 

logistic distributions, but the fit to observed data can be poor. In this paper, we investigate the fit of 

alternative link specifications based on the t -distribution. Such distributions arise naturally when mod- 

elling data which arise through aggregating an inhomogeneous sample of obligors, by combining a sim- 

ple structural-type model for credit migration at the obligor level, with a suitable mixing distribution to 

model the variability between obligors. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Background 

Credit ratings can be an invaluable tool for describing and mod- 

elling the default risk for obligors in a particular loan pool. A credit 

rating system is an ordinal classification reflecting the probability 

of default of a given obligor, with the highest rating represent- 

ing lowest probability of default, ranging down to a lowest rating 

typically representing an obligor already in default. For corporate 

assets, various ratings agencies (for example Moody’s or Standard 

and Poor’s) provide credit ratings. For retail obligors, a bank typ- 

ically uses its internal credit scoring systems for rating purposes. 

Our work in this area is motivated by the need to model credit 
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grade transitions in retail portfolios. Hence, we assume that grades 

are only observed at fixed discrete time intervals, and that detailed 

obligor-level covariate information is not available. However, we 

observe the same behaviour in retail portfolios and in pooled cor- 

porate agency ratings, and it is the latter which we use to illustrate 

our proposed modelling approach. 

One possible method for forecasting the evolution of default 

risk in a portfolio is to forecast the process by which individual 

credit grades (including default) migrate over time. The natural 

description of the process of credit grade migration between two 

time points is the transition matrix P ( t , u ), with elements p ij ( t , u ), 

representing the probability of transition from grade i at time point 

t to grade j at time point u , that is 

p i j (t, u ) = Prob(grade at time u = j| grade at time t = i ) . 

Here, we assume that i and j run from 1 (highest quality) to D 

with the final grade D representing default, and that, as described 

above, the grades are naturally ordinal with increasing grade num- 

ber representing increasing closeness to default. 

If π(t) = { π1 (t ) , . . . , πD (t ) } is the row vector containing the 

proportions of obligors in each of the credit grades at time t , then 

a forecast of the corresponding proportions π ( u ) at time u > t is 
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Fig. 1. Mapping between threshold and mean parameters and class probabilities for a cumulative link model. 

given by 

π(u ) = π(t) P (t, u ) . 

Hence, forecasting a future credit grade profile can be achieved 

by estimating the corresponding transition matrix between the 

present and the forecast horizon. Estimators are constructed by de- 

veloping statistical models for transition matrices, and fitting them 

to observed data on historical transitions. In this paper, we focus 

on developing statistical models which fit historical transition data 

on portfolio credit grade distributions. Typically, these data are a 

series of portfolio transition matrices representing the gross flow 

of obligors between each pair of credit grades in the given time pe- 

riod. We do not consider here the question of modelling the com- 

plete transition process. That is, given an empirical matrix X ( t , u ) 

of portfolio flow between times t and u , we consider the problem 

of estimating the corresponding transition matrix P ( t , u ) which can 

be thought of as a smoothed (and normalised so that rows sum to 

one) version of X ( t , u ). The matrices X ( t , u ) and P ( t , u ) are D × D 

matrices, with elements x ij ( t , u ) representing the observed num- 

ber of transitions from state i to state j between times t and u , 

and p ij ( t , u ) the corresponding transition probability. As the default 

state D is an absorbing state, estimation of P ( t , u ) simply requires 

estimation of the first D − 1 rows of P ( t , u ). 

We model the transition process over time as a series of one- 

period models, rather than a single all-encompassing model for the 

panel of empirical transition matrices. For a complete forecasting 

model, it is necessary to augment these one-period models for in- 

dividual historical transitions, in order to predict future transition 

dynamics. This is discussed briefly in Section 5 and is the subject 

of ongoing research. Henceforth, for clarity, the dependence of P , 

( p ij ) and X ( x ij ) on t and u , the beginning and end points of the 

period under consideration, is considered as implicit, and omitted 

from our notation. 

1.2. Ordinal data models 

Ordinal data can often be effectively modelled using a cumula- 

tive link model. A cumulative link model, for a collection of ordinal 

variables { Y k }, can be written as 

P (Y k ≤ j) = g(α j − μk ) (1) 

for some strictly increasing function g which can be interpreted 

as the distribution function of a latent continuously distributed 

variable. Then, −∞ = α0 , α1 , . . . , αD = ∞ , can be thought of as an 

increasing sequence of thresholds, defining the mapping between 

the underlying latent scale and the ordinal classes. The μk param- 

eters are observation-specific, but are typically modelled using a 

parsimonious regression function. Common choices of g are based 

on the standard normal (ordinal probit model) or logistic distribu- 

tions (proportional odds model). A visual illustration of the map- 

ping between the threshold parameters α1 , . . . , αD −1 , the mean pa- 

rameter μ and the class probabilities is given in Fig. 1 (for the case 

where D = 10 ). 

For ordinal transition matrix modelling, each row represents 

the ordinal outcome distribution for a different originating class. 

If we treat each row X i of our data matrix X (data on transitions 

from a single originating class i ) as arising from observations of 

independent and identically distributed ordinal random variables, 

then these observations share a common value of μk in (1) de- 

noted μi to acknowledge its dependence on the originating class i . 

Similarly, these ordinal outcomes share common threshold param- 

eters, αi 1 , . . . , αi D −1 . A general model is therefore 

q i j ≡
j ∑ 

k =1 

p ik = g(αi j − μi ) (2) 

so q ij are the cumulative transition probabilities for row i , and we 

assume the same form of underlying latent distribution (link func- 

tion g ) for each row. In fact, this is not a restriction, as any transi- 

tion matrix can be fitted exactly by (2) whatever the specification 

for g. However, the fidelity of a more parsimonious specification 

for αi j − μi in (2) will depend on the form of g . In this paper, we 

consider two simplifications of (2) , the standard cumulative link 

specification, introduced in (1) , which for a transition matrix can 

be written as 

q i j = g(α j − μi ) (3) 

and the scale-varying cumulative link model 

q i j = g 

(α j − μi 

σi 

)
. (4) 

The standard cumulative link model (3) assumes a set of com- 

mon thresholds, α, with the difference between rows of the transi- 

tion matrix being represented by a shift (mean-change) in the dis- 

tribution of the underlying latent variable. The scale-varying model 

allows for a ‘shift and stretch’ with the latent distribution differ- 

ing between rows in both location ( μ) and dispersion ( σ ). Note 



Download English Version:

https://daneshyari.com/en/article/480522

Download Persian Version:

https://daneshyari.com/article/480522

Daneshyari.com

https://daneshyari.com/en/article/480522
https://daneshyari.com/article/480522
https://daneshyari.com

