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a b s t r a c t 

This paper considers a fuzzy multi-period portfolio selection problem with V-Shaped transaction cost. 

Compared with the traditional studies assuming that assets have the same investment horizon, we handle 

the practical but complicated situation in which assets have different investment horizons. Within the 

framework of credibility theory, a mean-variance model is formulated with the objective of maximizing 

the terminal return under the total risk constraint over the whole investment. Alternatively, a variation is 

given by minimizing the total risk under the terminal return constraint. A fuzzy simulation based genetic 

algorithm (FSGA) is designed and three numerical examples are given to illustrate the effectiveness of the 

proposed approach. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Portfolio selection theory has been rapidly developed since 

Markowitz (1952) published the seminal work. By quantifying the 

investment return as expected value and quantifying the invest- 

ment risk as variance, the optimal portfolio should maximize the 

expected value of portfolio return under certain variance constraint 

or minimize the variance of portfolio return under certain expected 

value constraint. Markowitz’s work provides the fundamental prin- 

ciples for modern portfolio selection theory. Several extensions 

are proposed afterwards by considering transaction costs, trading 

size and turnover constraints, sensitivity analysis to changes in ex- 

pected return of the risky assets and other practical requirements 

( Feinstein & Thapa, 1993; Grinold & Hahn, 20 0 0; Konno & Wi- 

jayanayake, 2001; Merton, 1972; Qin, 2015; Soleimani, Golmakani, 

& Salimi, 2009 ). For example, Merton (1972) derived the mean- 

variance portfolio efficient frontiers and verified the characteristics 

for these frontiers. Soleimani et al. (2009) considered the mini- 

mum transaction lots, cardinality constraints and market capital- 

ization. 

The mean-variance approach needs to solve a quadratic pro- 

gramming model. For large-scale portfolio selection problems, it 

has difficulty in finding the optimal solution timely. To over- 

come this disadvantage, absolute deviation was used to con- 

struct a mean-absolute deviation model ( Konno & Yamazaki, 1991 ). 
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Simaan (1997) analyzed the differences thoroughly between the 

mean-variance model and the mean-absolute deviation model. Liu 

(2011) conducted two bi-level programming models to calculate 

the lower and upper bounds of the investment return by using 

mean-absolute deviation models. In the above works, the invest- 

ment risk was denoted by the first central absolute moments or 

the second order central moments of portfolio return, which treat 

high returns as equally undesirable as low returns. However, since 

investors care more about the part where the return is lower than 

the expected value, it is not reasonable to quantify the risk by 

variance or absolute deviation. Therefore, semivariance was pro- 

posed to denote the investment risk by taking the negative part 

of variance ( Markowitz, 1959 ). Hogan and Warren (1974) defined 

the semicovariance and developed a mean-semivariance portfo- 

lio selection model. Grootveld and Hallerbach (1999) studied the 

properties and computation problem of mean-semivariance mod- 

els. Ballestero (2005) applied the Sharpe single index approach to 

solve the mean-semivariance model. Another well-known down- 

side risk measure is semi-absolute deviation, which was first pro- 

posed by Speranza (1993) and extended by Papahristodoulou and 

Dotzauer (2004) . Other risk definitions in portfolio selection in- 

clude value-at-risk ( Linsmeier & Pearson, 20 0 0 ), conditional value- 

at-risk ( Rockafellar & Uryasev, 20 0 0, 20 02 ), entropy ( Kapur & Ke- 

savan, 1992 ), semi-entropy ( Zhou, Li, & Pedrycz, 2016 ), disutility- 

based risk measure ( Fulga, 2016b ), expected shortfall with loss 

aversion (ESLA) ( Fulga, 2016a ) and so on. 

Except for return and risk, skewness is the third popular ob- 

jective for researchers and practitioners. Kraus and Litzenberger 

(1976) pointed out the importance of the third central moment of 
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return, which was used to measure the asymmetry degree of re- 

turn distributions. Skewness was first considered in portfolio se- 

lection by Lai (1991) . Konno, Shirakawa, and Yamazaki (1993) pro- 

posed a mean-absolute deviation-skewness optimization model 

and applied it to the real-life stock market. Konno and Suzuki 

(1995) extended the mean-variance model to a mean-variance- 

skewness model and proposed three computational schemes for 

solving an associated nonconcave maximization problem. 

The above portfolio models characterize the returns of risky 

assets as random variables with given probability distributions, 

which is based on the assumption that the future returns can 

be precisely reflected by the historical data. However, in prac- 

tice, it is difficult to obtain the precise probability distributions 

as well as enough data due to the ever-changing economic envi- 

ronment. On the other hand, there are many non-probabilistic fac- 

tors in real-world portfolio decision-making, including social, polit- 

ical, people’s cognitive and psychological factors ( Basse, Friedrich, 

& Vazquez Bea, 2009 ), etc. Investors often obtain vague informa- 

tion with linguistic descriptions such as high risk, low profit and so 

on. In this case, fuzzy portfolio models behave better than proba- 

bilistic models and it is better to define the returns of risky as- 

sets as fuzzy variables ( Huang, 2012; Vercher & Bermudez, 2013; 

Wang & Zhu, 2002 ). With the introduction of fuzzy set theory, 

more and more scholars are engaged in portfolio selection stud- 

ies based on fuzzy set theory. For instance, Carlsson and Fullér 

(2001) introduced lower and upper possibilistic mean for fuzzy 

numbers. Zhang and Nie (2003) defined the lower and upper vari- 

ance and covariance for fuzzy numbers and formulated a fuzzy 

mean-variance model. Zhang, Zhang, and Xiao (2009) proposed 

a portfolio selection model with the maximum utility based on 

the interval-valued possibilistic mean and possibilistic variance. 

Bhattacharyya and Kar (2011) proposed another mean-variance- 

skewness model by applying the concept of weighted possibilistic 

moments of fuzzy numbers. Li, Guo, and Yu (2015) redefined the 

concepts of mean and variance for fuzzy numbers, proposed a con- 

cept of possibilistic skewness, and then formulated a fuzzy mean- 

variance-skewness portfolio selection model. Although possibility 

theory is widely used in portfolio selection, there are still some 

limitations since possibility measure is not self-dual. To overcome 

this disadvantage, the credibility measure was proposed ( Liu & 

Liu, 2002 ), and is accepted by more and more researchers ( Huang, 

2008; Qin, Li, & Ji, 2009; Vercher & Bermudez, 2015; Zhang, Zhang, 

& Chen, 2011; Zhang, Zhang, & Cai, 2010b ). Huang (2008) mea- 

sured the risk by entropy and presented credibilistic mean-entropy 

models. Qin et al. (2009) studied the credibilistic cross-entropy 

minimization portfolio selection model by defining the divergence 

from investment return to ideal return as fuzzy cross-entropy, av- 

erage return as expected value and risk as variance, semivari- 

ance and chance of bad outcome, respectively. Li, Qin, and Kar 

(2010) defined the skewness for fuzzy variable within the frame- 

work of credibility theory to formulate a fuzzy mean-variance- 

skewness model. Li, Shou, and Qin (2012) proposed an expected 

regret minimization model to minimize the expected distance be- 

tween the maximum return and the investment return. Vercher 

and Bermudez (2015) proposed a credibilistic mean-absolute semi- 

deviation portfolio selection model and applied the evolutionary 

algorithm to find the approximated Pareto frontier. 

All the above studies consider single-period investment which 

makes a one-off decision at the beginning of the period and holds 

on until the end of the period. However, in practice, investors of- 

ten need to reallocate their wealth in several consecutive peri- 

ods for long investment. Hence, it is natural to extend the single- 

period models to multi-period models. Several research work has 

been carried out by Hakansson (1971) , Li and Ng (20 0 0) , Wei and 

Ye (2007) , Fu, Lari-Lavassani, and Li (2010) , Wang and Forsyth 

(2011) and others on multi-period portfolio selection models ( Gao, 

Xiong, & Li, 2016; Yao, Li, & Li, 2016 ). To our knowledge, there are 

some research papers related to fuzzy multi-period portfolio se- 

lection problem. Liu, Zhang, and Xu (2012) proposed four fuzzy 

multi-period portfolio optimization models by considering multi- 

ple criteria. Zhang, Liu, and Xu (2012) designed a hybrid intelligent 

algorithm to solve multi-period possibilistic mean-semivariance- 

entropy model. Liu and Zhang (2015) used a fuzzy decision tech- 

nique to express investor’s preference and formulated a multi- 

period mean-semivariance model with transaction lots within the 

framework of possibility theory. There are some limitations for the 

above portfolio models in real applications. Fu et al. (2010) used 

the Hamilton–Jacobi–Bellman (HJB) equation to obtain the ex- 

plicit closed form solutions of efficient frontier. But this method 

is not more feasible for the massive calculation when there are 

large amounts of risky assets. Liu et al. (2012) and Liu and Zhang 

(2015) built the multi-period portfolio models within the frame- 

work of possibility theory and assumed that all the risky assets 

had the same investment horizon, which means that all the returns 

invested in this period can be obtained when this period ends. 

Thus, the multi-period portfolio model is just a simple accumu- 

lation of multiple single period models. However, in practice, the 

investment horizons for assets are generally different. The multi- 

period portfolio selection model becomes complicated when return 

at each period consists of various parts. Although some risky assets 

are invested at different periods, they may reach their maturity 

dates at the same period. For this unorthodox portfolio selection 

model, traditional mathematical programming methods are gener- 

ally inefficient on finding the optimal solutions due to the com- 

plexity and massive calculation. The contribution of this paper can 

be stated as follows: 
• To address the investor’s asset allocation for different invest- 

ment horizon with several periods. 
• To design a fuzzy simulation based genetic algorithm (FSGA) 

for approximate optimal solution. 

The rest of the paper is organized as follows. Section 2 re- 

views the preliminaries about fuzzy variables and credibility the- 

ory. Section 3 gives explicit expressions for returns at differ- 

ent periods by analyzing their compositions, and presents two 

multi-period mean-variance models. Section 4 introduces fuzzy 

simulation-based genetic algorithm. Section 5 presents two numer- 

ical examples to demonstrate the effectiveness of our proposed al- 

gorithm. Section 6 concludes the paper. 

2. Preliminaries 

To have a better understanding on this paper, some fundamen- 

tal concepts of credibility theory are introduced in this section. Let 

� be a nonempty set, and P be its power set. Each element of P
is called an event. Credibility measure is a set function from P to 

[0, 1]. In order to ensure that the set function has certain math- 

ematical properties, Li and Liu (2006) provided the following four 

axioms: 

Axiom 1. (Normality) Cr { �} = 1 for the universal set �. 

Axiom 2. (Monotonicity) Cr { A } ≤ Cr { B } for any events A ⊆ B , A, B ∈ 

P . 

Axiom 3. (Duality) Cr { A } + Cr { A 

c } = 1 for any event A ∈ P . 

Axiom 4. (Maximality) Cr {∪ i A i } = sup i Cr { A i } for any collection of 

events { A i } with sup i Cr { A i } < 0 . 5 . 

If Cr is a credibility measure, the triplet (�, P, Cr ) is called a 

credibility space. A fuzzy variable ξ is a function from a credibility 

space (�, P, Cr ) to the set of real numbers � . 

Definition 2.1 ( Li, 2013 ) . Suppose that ξ is a fuzzy variable defined 

on the credibility space (�, P, Cr ) . Then its credibility function is 
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