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In this paper we study optimization techniques for calibration of stochastic volatility models to real mar- 

ket data. Several optimization techniques are compared and used in order to solve the nonlinear least 

squares problem arising in the minimization of the difference between the observed market prices and 

the model prices. To compare several approaches we use a popular stochastic volatility model firstly in- 

troduced by Heston (1993) and a more complex model with jumps in the underlying and approximative 

fractional volatility. Calibration procedures are performed on two main data sets that involve traded DAX 

index options. We show how well both models can be fitted to a given option price surface. The routines 

alongside models are also compared in terms of out-of-sample errors. For the calibration tasks without 

having a good knowledge of the market (e.g. a suitable initial model parameters) we suggest an approach 

of combining local and global optimizers. This way we are able to retrieve superior error measures for all 

considered tasks and models. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In finance, stochastic volatility (SV) models are used to evalu- 

ate derivative securities, such as options. These models were de- 

veloped out of a need to modify the Nobel price winning ( Black & 

Scholes, 1973 ) model for option pricing, which failed to effectively 

take the volatility in the price of the underlying security into ac- 

count. The Black Scholes model assumed that the volatility of the 

underlying security was constant, while SV models consider it to 

be a stochastic process. Among the first publications about stochas- 

tic volatility models were Hull and White (1987) , Scott (1987) , 

Stein and Stein (1991) and Heston (1993) . 

Later several extensions to SV models were proposed. In partic- 

ular, to fit the short term prices, a model with stochastic volatility 

and jumps was introduced by Bates (1996) , who combined ap- 

proaches of Heston (1993) and Merton (1976) . Furthermore, in 

order to capture volatility clustering phenomenon in the SV model 

explicitly, long memory driving process in volatility was used for 

example by Intarasit and Sattayatham (2011) . This property is 

described by a long memory parameter named after hydrologist 

H. E. Hurst. Its value can be estimated from the realized volatility 

time-series as in Bollerslev and Mikkelsen (1996) , Breidt, Crato, 

and de Lima (1998) and Martens, van Dijk, and de Pooter (2004) , 

or it can be obtained from the calibration to the market data. 
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Calibration is the process of identifying the set of model pa- 

rameters that are most likely given by the observed data. Heston 

model was the first model that allowed reasonable calibration to 

the market option data together with semi-closed form solution 

for European call/put option prices. Heston model also allows cor- 

relation between the asset price and the volatility process as op- 

posed to Stein and Stein (1991) . Although the Heston model was 

already introduced in 1993 and several other SV models appeared, 

it is nowadays still one of the most popular models for option pric- 

ing. 

Many other SV models have been introduced since, including a 

more flexible version of the Heston model which involves time- 

dependent parameters. The case of piece-wise constant parame- 

ters in time is studied in Nögel and Mikhailov (2003) , a linear 

time dependence in Elices (2008) and a more general case is in- 

troduced in Benhamou, Gobet, and Miri (2010) . The later result in- 

volves only an approximation to the option price. However, Bayer, 

Friz, and Gatheral (2015) suggest that the general overall shape 

of the volatility surface does not change in time, at least to a 

first approximation. Hence, it is desirable to model volatility by 

a time-homogeneous process. Other generalizations of the Heston 

model with time-constant parameters include jump processes in 

asset price, in volatility or in both (see e.g Duffie, Pan, & Singleton, 

20 0 0 ). 

The industry standard approach to calibration is to minimize 

the difference between the observed prices and the model prices. 

Option pricing models are calibrated to prices observed on the 

market in order to compute over-the-counter derivative prices or 
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hedge ratios. The complexity of the model calibration process in- 

creases with more realistic models and the fact that the estimation 

method of model parameters becomes as crucial as the model it- 

self is mentioned by Jacquier and Jarrow (20 0 0) . 

In our case, the input parameters cannot be directly observed 

from the market data, thus empirical estimates are of no use. 

It was well documented in Bakshi, Cao, and Chen (1997) that 

the model implied parameters differ significantly from their time- 

series estimated counterparts. For instance, the magnitudes of 

time-series correlation coefficient of the asset returns and its 

volatility estimated from the daily prices were much lower than 

their model implied counterparts. 

Moreover, the information observed from market data is insuf- 

ficient to exactly identify the parameters, because several sets of 

parameters may be performing well and provide us with model 

prices that are close to the prices observed on the market. This is 

what causes the ill-posedness of the calibration problem. 

The paper is organized as follows. In Section 2 we briefly intro- 

duce the stochastic volatility models under consideration, in par- 

ticular the Heston model and the approximative fractional model 

together with their semi-closed form solutions for vanilla options. 

In Section 3 we introduce the testing methodology – most impor- 

tantly we disclose how we measure the model performance, how 

calibration tasks are formulated and we also comment in detail on 

the data structure. Among the considered methods there are three 

global optimizers, i.e. genetic algorithm (GA), simulated annealing 

(SA) and adaptive simulated annealing (ASA) as well as the local 

search method (denoted by LSQ). 

In Section 4 we demonstrate how the optimization procedures 

can be used for the calibration problem on particular data sets. We 

will conclude our results in Section 5 . 

2. Stochastic volatility models 

2.1. Heston model 

Following Heston (1993) and Rouah (2013) we consider the 

risk-neutral stock price model: 

dS t = rS t dt + 

√ 

v t S t d ̃  W 

S 
t , (1) 

dv t = κ(θ − v t ) dt + σ
√ 

v t d ̃  W 

v 
t , (2) 

d ̃  W 

S 
t d ̃

 W 

v 
t = ρ dt, (3) 

with initial conditions S 0 ≥ 0 and v 0 ≥ 0 , where S t is the price of 

the underlying asset at time t , v t is the instantaneous variance at 

time t , r is the risk-free rate, θ is the long run average price vari- 

ance, κ is the rate at which v t reverts to θ and σ is the volatility of 

the volatility. ( ̃  W 

S , ̃  W 

v ) is a two-dimensional Wiener process under 

the risk-neutral measure ̃  P with instantaneous correlation ρ . 

Stochastic process v t is referred to as the variance process (also 

known as volatility process) and it is the square-root mean revert- 

ing process, CIR process ( Cox, Ingersoll, & Ross, 1985 ). It is strictly 

positive and cannot reach zero if the Feller condition 2 κθ > σ 2 is 

satisfied ( Feller, 1951 ). 

Heston SV model allows for a semi-closed form solution for 

vanilla option, which involves numerical computation of an inte- 

gral. Several pricing formulas were added to the original one by 

Heston (1993) in order to overcome numerical problems that the 

integrand poses. The following formulation by Albrecher, Mayer, 

Schoutens, and Tistaert (2007) eliminates the possible discontinu- 

ities in the integrand by only simple modifications of the original 

formula by Heston. Let K be the strike price and τ = T − t be the 

time to maturity. Then the price of a European call option at time 

t on a non-dividend paying stock with a spot price S t is 

V (S, v , τ ) = SP 1 − e −rτ KP 2 , (4) 

P j (x, v , τ ) = 

1 

2 

+ 

1 

π

∫ ∞ 

0 

Re 

[ 
e −iφ ln (K) f j (x, v , τ, φ) 

iφ

] 
dφ, 

where x = ln S and 

f j (x, v , τ, φ) = exp { C j (τ, φ) + D j (τ, φ) v + iφx } , 
and where 

C j (τ, φ) = rφiτ + 

a 

σ 2 

{ 

(b j − ρσφi − d) τ

− 2 ln 

[ 
1 − ge −dτ

1 − g 

] } 

, 

D j (τ, φ) = 

b j − ρσφi − d 

σ 2 

[ 
1 − e −dτ

1 − ge −dτ

] 
, 

g = 

b j − ρσφi − d 

b j − ρσφi + d 
, 

d = 

√ 

(ρσφi − b j ) 2 − σ 2 (2 u j φi − φ2 ) , 

for both j = 1 , 2 , where the parameters u j , a and b j are defined as 

follows: 

u 1 = 

1 

2 

, u 2 = −1 

2 

, a = κθ, b 1 = κ − ρσ, b 2 = κ. 

Different approaches are taken in e.g. Kahl and Jäckel (2005) , 

Lewis (20 0 0) or Zhylyevskyy (2012) . We will use here the formula 

by Lewis (20 0 0) , which is well-behaved and compared to the for- 

mulation by Albrecher et al. (2007) requires the numerical compu- 

tation of only one integral for each call option price. 

V (S, v , τ ) = S − Ke −rτ 1 

π

∫ ∞ + i/ 2 

0+ i/ 2 
e −ikX 

ˆ F (k, v , τ ) 

k 2 − ik 
dk, (5) 

where X = ln (S/K) + rτ and 

ˆ F (k, v , τ ) = exp 

(
2 κθ

σ 2 

[ 
q g − ln 

(
1 − he −ξq 

1 − h 

)] 
+ 

+ v g 
(

1 − e −ξq 

1 − he −ξq 

))
, 

where 

g = 

b − ξ

2 

, h = 

b − ξ

b + ξ
, q = 

σ 2 τ

2 

, 

ξ = 

√ 

b 2 + 

4(k 2 − ik ) 

σ 2 
, 

b = 

2 

σ 2 

(
ikρσ + κ

)
. 

The Lewis formula (5) uses the (inverse) complex Fourier trans- 

form of the so called fundamental transform 

ˆ F (k, v , τ ) , where k 

is complex-valued. Given the fundamental transform (of the cor- 

responding pricing partial differential equation) one can obtain an 

option price for different particular payoff functions, not only the 

European call. Equivalence of the Lewis and Heston (and hence Al- 

brecher) formulas can be found for example in Baustian, Mrázek, 

Pospíšil, and Sobotka (2016) . 

2.2. Model with approximative fractional stochastic volatility 

We also consider a model with approximative fractional 

stochastic volatility that was motivated by Intarasit and Sattay- 

atham (2011) and firstly introduced by Pospíšil and Sobotka (2015) . 

Under a risk-neutral measure, the model dynamics takes the fol- 

lowing form: 

dS t = (r − λβ) S t dt + 

√ 

v t S t d ̃  W 

S 
t + S t− dQ t , (6) 

dv t = κ(θ − v t ) dt + σ
√ 

v t d ̃  B 

ε,H 
t , (7) 
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