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ABSTRACT

Data in many real-life engineering and economical problems suffer from inexactness. Herein we assume
that we are given some intervals in which the data can simultaneously and independently perturb. We
consider a generalized linear fractional programming problem with interval data and present an efficient
method for computing the range of optimal values. The method reduces the problem to solving from two
to four real-valued generalized linear fractional programs, which can be computed in polynomial time
using an appropriate interior point method solver.

We consider also the inverse problem: How much can data of a real generalized linear fractional pro-
gram vary such that the optimal values do not exceed some prescribed bounds. We propose a method for
calculating (often the largest possible) ranges of admissible variations; it needs to solve only two real-val-
ued generalized linear fractional programs. We illustrate the approach on a simple von Neumann eco-

nomic growth model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainties in data measurement and observation is a com-
mon phenomenon in practice. Considering their interval envelopes
is one way to tackle these uncertainties. Computing with interval
values has many useful properties, e.g., it ensures that all possible
instances of interval data are taken into account. Contrary to the
traditional sensitivity analysis, this approach can handle simulta-
neous and independent perturbations of selected parameters.

Mathematical programming problems with interval data have
been investigated for several decades. Many papers studied the
problem of computing the range of optimal values of linear pro-
gramming problem with data varying inside intervals, see
[5,7,14,21] among others. Less people were involved nonlinear pro-
gramming with data perturbing inside intervals. For instance,
interval convex quadratic programming was studied in [13,20],
posynomial geometric programming in [13,17-19], and a specific
nonlinear programming problem with linear constraints in [29].

In this paper, we focus on a generalized linear fractional pro-
gramming problem the data of which vary inside some given inter-
vals. To the best of our knowledge, this problem itself has never
been investigated. In the essence, it can be solved by the general
method from [13], where a unified method for dealing with inter-
val nonlinear programming problems was proposed. That ap-
proach was based on duality theory in nonlinear programming,
and for generalized linear fractional programming we have a
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developed duality [6,15] to use. Nevertheless, the approach is a
bit cumbersome: We have to derive characterization of primal
and dual interval solution sets and the results will be restricted
by some assumptions. Stronger results with no needless assump-
tions are obtained by direct inspection, which is exactly what we
do in Section 2.

In Section 2, we show that the exact range of optimal values can
be calculated by solving up to four real-valued mathematical
programs. Moreover, the method is easily adapted for solving the
inverse problem (Section 3): We are given real-valued a general-
ized linear fractional programming problem and some bounds on
the optimal value function, and we calculate tolerances (intervals)
for all required parameters such that the optimal values do not
exceed the bounds while the parameters are perturbing inside
their intervals.

Many applications of generalized linear fractional programming
arise in the field of economics and optimization. For instance, von
Neumann growth model of expanding economy [25], goal pro-
gramming with rational criteria [3,4], or Chebyshev discrete ra-
tional approximation. For another applications, see e.g. [23,24].
Since the economical parameters of the real life problems (includ-
ing the mentioned applications) are often imprecise, the results
developed in this paper form a useful and efficient tool in decision
making and analysis.

2. Range of optimal values

Consider a generalized linear fractional programming problem
f(A,B,C,c) :=inf A subject to Ax < ABx, Cx < c, x > 0, (1)
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where A, Be R™" C ¢ R*" and c € R. Moreover, we assume that
x > 0 holds for all x satisfying Cx < ¢, x > 0. Such problems are
solvable in polynomial time using an interior point method [8,22].
Now suppose that the input data are not known exactly, and we
are given only lower and upper bounds on their values. Formally,
the matrix A varies in some interval matrix A:=[A,A]={A¢c
R™"|a; < ay < G}, where A, A € R™" are given matrices. In a sim-
ilar way we consider interval matrices B and C and interval vector ¢
in which B, C and ¢ may perturb, respectively. Thus we have a fam-
ily of problems (1) withA € A, Be B, C € C and c € c. Any problem
belonging to this family is referred as an instance.
To ensure that each instance is a proper generalized linear frac-
tional programming problem we have to assume:

(A1) For every BeB, CcC and cec any solution to
Cx > c, x = 0 solves also Bx > 0.

Proposition 1 shows that to verify this assumption; it suffices to
verify only one instance with B=B, C=C and c = .

Proposition 1. Assumption (A1) is true if and only if Bx >
all x satisfying Cx < ¢, x > 0.

0 holds for

Proof. One implication is easily seenas B=B, C=Cand c=cC is
an instance of our family of problems.

Conversely, let Be B, C € C and c € ¢ and suppose that any x
satisfying Cx < ¢, x > 0 is also a solution of Bx > 0. Now, let x* be
any solution to Cx < ¢, x > 0. Then

Cxr<x"<c<c.

Thus x* is a solution to Cx <
Bx > 0. Hence

Bx* = Bx* > 0.

¢, and by our supposition x* solves also

Therefore x* is a solution to Bx > 0. O

As data are perturbing in their intervals, the optimal value
f(A,B,C,c) ranges in some interval as well. Our aim is to determine
the exact lower and upper bound on the optimal value. They are
respectively defined as

f:=inff(A B,C,c) subjectto AcA, BeB, Cc(, cec,
f:=supf(A,B,C,c) subjectto AcA, BeB, CeC, cec.

The following theorem says that both bounds can be calculated by
solving one to two real-valued generalized linear fractional pro-
gramming problems.

Theorem 1.

1. (Lower bound) Let
f1 :=inf 1 subject to Ax < ABx, A <0, Cx<¢C, x> 0. (2)
If fi <O then f = fi, otherwise f = f, with

f> = inf A subject to Ax < /Bx, 1 >0, Cx <, x > 0.
2. (Upper bound) Let
f3 :=inf A subject to Ax < /Bx, 1 >0, Cx<c, x > 0. (3)

Iff > 0 then f = f5, otherwise f = f, with

fa :=inf 1 subject to Ax < Bx, 1< 0, Cx<¢, x > 0. (4)

Proof. 1. (Lower bound) First we consider the case when f < 0.
There is at least one instance of (1) with negative optimal value,
so we can restrict our considerations to the family

inf 7 subject to Ax < ABx, . <0, Cx<¢, x>0 (5)

with A€ A, BeB, C<C, cecc. For any instance and any feasible
point 2, x we have Ax < Ax </Bx < Bx, and Cx < Cx<c<CcC It
means that /, x is also a feasible solution to the problem

JBx, 7. <0, Cx<¢c, x =0. (6)

That is, the feasible set to (6) covers feasible sets of all instances of
problems (5). Therefore the lower bound f will be achieved for this
instance. -

Suppose now that f > 0. In this case, all instances of (1) have
non-negative optimal values, and all their feasible solutions 7, x
have /. > 0. That is why (2) is either infeasible or its optimal value
is zero. So it remains to show that f > 0 implies f = f5. Herein, (1)
takes the equivalent form h h

ABx, >0, C&x<c, x> 0.

inf A subject to Ax <

inf 1 subject to Ax <

For any instance and every feasible solution 4, x we have
Ax < Ax < JBx < /Bx, and Cx < Cx < ¢ < C. It means, A, x is also a
feasible solution to the problem

inf 4 subject to Ax < /Bx, 1 >0, Cx<¢C, x > 0. (7)

Hence the feasible set to (7) covers feasible sets of all instances of
problems (1), and the lower bound f will be achieved for this
instance. -

2. (Upper bound) First we assume that f > 0. Then there is at
least one instance of (1) with positive optimal value, so we can
restrict our considerations to the family

inf A subject to Ax < ABx, A >0, (x<c, x>0 (8)

with Ac A, BeB, Ce(, cec. If (3) is infeasible then f = f; = c
and we are finished. So let A, x be any feasible solution of (3). Then
for any instance of (8) we have Ax <Ax < Bx </Bx, and
Cx < Cx < c < c Thus A, x is a feasible solution to any instance of
(8). In other words, the feasible set to (3) is included in a feasible
set of any instance of (8). Therefore the highest optimal value will
be achieved for A=A, B=B, C=C, c=c.

Suppose now that f < 0. In this case, all instances of (1) have
non-positive optimal values, and all their feasible solutions 4, x
have 4 < 0. That is why (3) is either infeasible or its optimal value
is zero. It remains to show that f =f;. We rewrite (1) in the
equivalent form

inf 7 subject to Ax < /Bx, /<0, Cx<c, x > 0. 9)

Let A, x be any feasible solution of (4); if (4) is infeasible then
f = f4s = oo contradicting our assumption. For any instance of (9)
we have Ax < Ax < 2Bx < ABx, and Cx < Cx < ¢ < c. Thus the feasi-
ble set to (4) is included in the feasible set of any instance of (9).
Therefore the highest optimal value will be achieved in the setting

A=A

,B=B, C=C,c=c. O

3. Tolerances of variations

In this section we consider the inverse problem to the previous
one. We start with some real-valued problem and want to extend
the reals to intervals such that the optimal value of all instances
ranges in some prescribed bounds. Analogous problems were stud-
ied in linear programming [12], but—to the best of our knowl-
edge—no one discussed any nonlinear case.

Similar kinds of problems are called tolerance analysis, and we
usually study how much may certain parameters perturb while
preserving some characteristics, e.g. optimality of some point or
basis. They were dealt with mainly in linear programming
[1,2,11,26-28] concerning only selected parameters (in the objec-
tive function or in the right-hand side of constraints). Tolerance
analysis for all objective function coefficients in multiobjective lin-
ear programming was done in [9,10].
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