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a b s t r a c t

Due to its versatility, copositive optimization receives increasing interest in the Operational Research
community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimiza-
tion, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity
of copositive formulations in different domains of optimization is impressive, since problem classes both
in the continuous and discrete world, as well as both deterministic and stochastic models are covered.
Copositivity appears in local and global optimality conditions for quadratic optimization, but can also
yield tighter bounds for NP-hard combinatorial optimization problems. Here some of the recent success
stories are told, along with principles, algorithms and applications.

� 2011 Published by Elsevier B.V.

1. Introduction

1.1. Motivation, notation and basic ideas

Copositive optimization (or copositive programming, coined in
[19]) is a special case of conic optimization, which consists of min-
imizing a linear function over a (convex) cone subject to additional
(inhomogeneous) linear (inequality or equality) constraints. This
problem class has a close connection to that of quadratic optimiza-
tion, which represents the simplest class of hard problems in con-
tinuous optimization [102] – to minimize a (possibly indefinite)
quadratic form over a polyhedron given in standard form:

minfx>Qx : Ax ¼ b;x 2 Rn
þg: ð1Þ

Here we denote by bold-faced letters vectors in n-dimensional
Euclidean space Rn, the positive orthant therein by Rn

þ (we write
a P b for a� b 2 Rn

þ), and by > transposition. In is the n � n identity
matrix (sometimes with subscript suppressed if the order of In is
clear from the context), o and O stand for zero vectors, and matrices,
respectively, of appropriate orders. For two integers m and n with
m 6 n we abbreviate [m : n] for the integer interval {m,m + 1, . . . ,n}.

The basic lifting idea (see, e.g. [92]) is to linearize the quadratic
form

x>Qx ¼ traceðx>QxÞ ¼ traceðQxx>Þ ¼ hQ ; xx>i

by introducing the new symmetric matrix variable X = xx> and
Frobenius duality hX,Yi = trace(XY). If Ax 2 Rm

þ for all x 2 Rn
þ and

b 2 Rm
þ , then the linear constraints in (1) can be squared, to arrive

in a similar way at linear constraints of the form hAi;Xi ¼ b2
i , where

Ai ¼ aia>i and a>i is the ith row of A.
Now the set of all these X = xx> generated by feasible x is non-

convex since rank (xx>) = 1. The convex hull

C ¼ conv xx> : x 2 Rn
þ

� �
;

results in a convex matrix cone called the cone of completely positive
matrices since [71]; for a text see [7]. Note that a similar construc-
tion dropping nonnegativity constraints leads to

P ¼ conv xx> : x 2 Rn
� �

;

the cone of positive-semidefinite matrices, the basic set in Semi-
definite Optimization (SDP), wherefrom above lifting idea was
borrowed.

1.2. Terminology, duality and attainability

Duality theory for conic optimization problems requires the
dual cone C� of C w.r.t. the Frobenius inner product which is

C� ¼ S a symmetric n� n matrix : hS;XiP 0 for all X 2 Cf g:

Here it can easily be shown that C� coincides with the cone of copos-
itive matrices, namely

C� ¼ S a symmetric n� n matrix : x> Sx P 0 for all x 2 Rn
þ

� �
:

This observation justifies terminology of our problem class. The
term was coined by Motzkin (the usually cited source [106] how-
ever provides no evidence of this) who called a matrix S copositive
(apparently abbreviating ‘‘conditionally positive-semidefinite’’), if S
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generates a quadratic form x>Sx taking no negative values over the
positive orthant. More generally, let C # Rn be a closed convex cone
and consider the class

C�C ¼ fS a symmetric n� n matrix : x> Sx P 0 for all x 2 Cg

of all C-copositive matrices. This is the dual cone of

CC ¼ convfxx> : x 2 Cg:

The first accounts on copositive optimization can be found in
[116,19], where a copositive representation of a subclass of partic-
ular interest is established, namely for Standard Quadratic Optimi-
zation Problems (StQPs). Here the feasible polyhedron is the
standard simplex D ¼ x 2 Rn

þ : e>x ¼ 1
� �

, where e ¼ ½1; . . . ;1�> 2
Rn: this subclass is also NP-hard (there can be up to
� 2n=ð1:25

ffiffiffi
n
p
Þ local non-global solutions [14]). Now, with E = ee>

the n � n all-ones matrix, we have

minfx>Qx : x 2 Dg ¼minfhQ ;Xi : hE;Xi ¼ 1; X 2 Cg: ð2Þ

Note that the problem on the right-hand side is convex, so there are
no more local, non-global solutions. In addition, the objective func-
tion is now linear, and there is just one linear equality constraint.
The complexity has been completely pushed into the feasibility
condition X 2 C, which also shows that there are indeed convex
minimization problems which cannot be solved easily: while the
most prominent conic optimization problems, namely SDPs,
second-order cone optimization, and linear optimization problems
(LPs), can be solved to arbitrary accuracy in polynomial time, copos-
itive problems are NP-hard. The dual of problem (2) over C is then

maxfy : S ¼ Q � yE 2 C�g; ð3Þ

a linear objective in just one variable y with the innocent-looking
feasibility constraint S 2 C�. This shows that checking membership
of C� is NP-hard, which has been observed already by [102]. More
generally, a typical primal-dual pair in copositive optimization is
of the following form:

inffhC;Xi : hAi;Xi ¼ bi; i 2 ½1 : m�; X 2 Cg

P sup b>y : y 2 Rm; S ¼ C �
X

i

yiAi 2 C�
( )

:

The inequality above is just standard weak duality, but observe we
have to use inf and sup since – as in general conic optimization –
there may be problems with attainability of either or both problems
above, and likewise there could be a (finite or infinite) positive dual-
ity gap without any further conditions like strict feasibility (Slater’s
condition). For the above representation of StQPs, this is not the
case:

minfhQ ;Xi : hE;Xi ¼ 1;X 2 Cg ¼maxfy : S ¼ Q � yE 2 C�g:

But for a similar class arising in many applications, the Multi-
Standard Quadratic Optimization Problems [25], dual attainability is
not guaranteed while the duality gap is zero – an intermediate form
between weak and strong duality [117]. A complete picture of pos-
sible attainability/duality gap constellations in primal-dual pairs of
copositive optimization problems is provided in [26], which also
lists some elementary algebraic properties and counterexamples
illustrating the difference between the semidefinite cone P and
the copositive/completely positive cone C�=C. This is important for
many copositivity detection procedures, and as we saw in (3), the
feasibility constraint incorporates most of the hardness in coposi-
tive optimization.

1.3. Surveys, reviews, entries, book chapters

Copositive optimization receives increasing interest in the
Operational Research community, and is a rapidly expanding and

fertile field of research. While the time may not yet be ripe for
writing up the final standard text book in this domain, several
authors nonetheless bravely took the challenge of providing an
overview, thereby aiming at a rapidly moving target. A recent sur-
vey on copositive optimization is offered by [57], while [77,74]
provide reviews on copositivity with less emphasis on optimiza-
tion. Bomze [16] and Busygin [37] provided entries in the most re-
cent edition of the Encyclopedia of Optimization. Recent book
chapters with some character of a survey on copositivity from an
optimization viewpoint are [17, Section 1.4] and [34]. Finally,
[26] offers a rough literature review by clustering a considerable
part of copositivity-related publications.

1.4. Organization of this paper

We start in Section 2 by demonstrating the diversity of coposi-
tive formulations in different domains of optimization: continuous
and discrete, deterministic and stochastic. Section 3 briefly
sketches the ideas of approximation hierarchies, a field with many
contacts to (semi-)algebraic geometry and positive polynomials,
therefore closely related to the Positivstellensatz [120,118,114],
an extension of Hilbert’s famous Nullstellensatz. Also some com-
plexity issues are discussed here. We turn to the core of Opera-
tional Research in discussing the role of copositivity for local and
global optimality conditions in Section 4. In the world of quadratic
optimization, it turns out that checking global optimality requires
an effort which differs from that of checking local optimality only
by a factor smaller than the number of constraints. This may be
somewhat surprising at first thought. On the other hand, elemen-
tary geometric intuition also suggests that the gap between global
and local optimization opens more widely when curvature of the
objective is no longer constant. In Section 5, we give a short ac-
count on some algorithmic approaches to checking copositivity,
and to solve copositive optimization problems. Finally, in Section
6, some success stories are reported: how to obtain tractable yet
tight bounds for NP-complete combinatorial problems like the
Maximum-Clique problem, how to find the best known asymptotic
bound for crossing numbers, and, in the continuous domain, how
to construct tight convex underestimators by means of copositive
optimization, or Lyapunov functions for switched dynamical sys-
tems in optimal control.

2. Copositive reformulations of NP-hard problems

2.1. The standard quadratic case

This case was already addressed above as a motivating (and his-
torically first) example for copositive reformulation, see [116,19].
The Maximum-Clique problem provides a thoroughly studied
example of application, see Section 6.3. So consider the StQP

aQ ¼minfx>Qx : x 2 Dg; ð4Þ

and its copositive formulation

aQ ¼minfhQ ;Xi : hE;Xi ¼ 1;X 2 Cg:

Not only the optimal values are equal, we also know there is always
a rank-one solution X⁄ to the latter problem over C, which encodes
an optimal solution x⁄ to the StQP (4) by way of X⁄ = x⁄(x⁄)>. How-
ever, if there are multiple optimal solutions to the former (or the
latter), we only know that any optimal solution X (which may be re-
turned by an – ideal – copositive optimization procedure) is a con-
vex combination of rank-one solutions of the type X⁄ above.
Therefore a rounding procedure is required to retrieve the solution
of the StQP in general, unless the above addressed procedure ‘auto-
matically’ delivers a rank-one solution. In any case, a strength of
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