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a b s t r a c t

We address in this article the multi-commodity pickup-and-delivery traveling salesman problem, which is a

routing problem for a capacitated vehicle that has to serve a set of customers that provide or require certain

amounts of m different products. Each customer must be visited exactly once by the vehicle, and it is assumed

that a unit of a product collected from a customer can be supplied to any other customer that requires that

product. Each product is allowed to have several sources and several destinations. The objective is to minimize

the total travel distance. We propose a hybrid three-stage heuristic approach that combines a procedure to

generate initial solutions with several local search operators and shaking procedures, one of them based

on solving an integer programming model. Extensive computational experiments on randomly generated

instances with up to 400 locations and 5 products show the effectiveness of the approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Multi-Commodity Pickup-and-Delivery Traveling Salesman

Problem (m-PDTSP) is a generalization of the Traveling Salesman Prob-

lem in which a capacitated vehicle based at a depot must visit a set of

customers. Each location (depot and customers) must be visited ex-

actly once by the vehicle. The travel cost between each pair of lo-

cations is known, and not necessarily symmetric. Each customer re-

quires some given quantities of different products and/or provides

some given quantities of other different products. A unit of a product

collected from a customer can be supplied to any customer that re-

quires this product. It is assumed that the vehicle must start and fin-

ish the route at the depot. Another visit to the depot is not allowed.

The aim of the m-PDTSP is to find a Hamiltonian route for the vehicle

such that it picks up and delivers all the quantities of the different

products satisfying the vehicle-capacity limitation and minimizing

the total travel cost. Since each customer is visited once, each unit

of a product loaded on the vehicle stays on the vehicle until it is de-

livered. For that reason we say that the m-PDTSP is a non-preemptive

problem.

The initial load of any product in the vehicle when leaving the de-

pot is unknown, and must be determined within the optimization

problem. The variant of the m-PDTSP where the initial load of any
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product is fixed can also be solved through the approach described

in this paper with a slight modification of the instance. Note that,

the initial load being unfixed, the vehicle is allowed to deliver a de-

mand immediately when leaving the depot and collect the associated

product afterwards. In other words, there are not a priori precedence

relations between pickup and delivery locations of a commodity in

the route. Still, the approach described in this paper can be adapted

to the variant where the the initial load is required to be zero. This as-

sumption is argued in Hernández-Pérez and Salazar-González (2014).

An application of the m-PDTSP occurs in the context of inventory

repositioning, as pointed out by Anily and Bramel (1999). Assume

that a set of retailers is geographically dispersed in a region. Often,

due to the random nature of the demand, some retailers have an

excess of inventory of some products while others need additional

stock. In many cases the company may decide to transfer inventory

from retailers with low sales to those with high sales. Determining

the cheapest way to execute a given stock transfer (with the re-

quirement that each location has to be visited exactly once) is the

m-PDTSP.

Another application arises in the context of a self-service bike hir-

ing system, where every night a capacitated vehicle must visit the

bike stops in a city to collect or deliver bikes to restore the initial con-

figuration of the system. Chemla, Meunier, and Wolfler-Calvo (2013)

and Raviv, Tzur, and Forma (2013), among others, approached the

case where the bikes are all identical (i.e., one product) as a 1-PDTSP.

When there are different types of bikes (e.g., with and without baby

chairs) the problem can be described as the m-PDTSP.
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The m-PDTSP is NP-hard in the strong sense since it coincides

with the TSP when the vehicle capacity is large enough. What is more,

even checking the existence of a feasible solution for an instance

with m = 1 is a strongly NP-complete problem (see Hernández-

Pérez & Salazar-González, 2004). The m-PDTSP was introduced by

Hernández-Pérez and Salazar-González (2014). They proposed a

Mixed Integer Linear Programming model for the m-PDTSP, and de-

scribed a branch-and-cut algorithm able to solve instances with up

to 30 customers and 3 commodities. Since exact algorithms are only

able to cope with small instances, heuristic approaches are needed to

tackle larger instances in practice. This is the main motivation of our

paper.

A closely related problem to the m-PDTSP is the Non-Preemptive

Capacitated Swapping Problem (NCSP), proposed by Erdoǧan, Cordeau,

and Laporte (2010). As in the m-PDTSP, the NCSP considers one depot,

a set of customers, and several commodities with many sources and

many destinations. In the NCSP, however, each customer concerns

one commodity (either as pickup or delivery location) or two com-

modities (one as pickup location and another as delivery location). In

addition to customer locations, the NCSP also includes transshipment

locations, where some commodities can be temporarily dropped off.

Customer and transshipment locations may be visited zero, one or

two times by the vehicle, while the depot may be visited up to three

times. The demand of a customer cannot be split and a commodity

cannot be dropped off in an intermediate customer. The NCSP con-

sists of finding a minimum-cost route satisfying all customer’s re-

quests. Erdoǧan et al. (2010) describe a branch-and-cut algorithm to

solve instances with up to 20 locations and 8 commodities, and 30 lo-

cations and 4 commodities. Bordenave, Gendreau, and Laporte (2009)

present a branch-and-cut algorithm to solve the particular case of

the NCSP where the vehicle capacity and customer demands are all

equal to one. They solved instances with up to 200 locations and

8 commodities.

The one-to-one m-PDTSP is a particular case of the m-PDTSP where

each commodity has one origin and one destination. It can be consid-

ered as a Dial-a-Ride routing problem without time window require-

ments. The one-to-one m-PDTSP assumes that the load of the vehicle

when leaving the depot is zero, unless the depot is the source of a

commodity. Hernández-Pérez and Salazar-González (2009) describe

a branch-and-cut algorithm for this problem solving instances involv-

ing up to 24 customers and 15 commodities. Rodríguez-Martín and

Salazar-González (2011) propose and compare several metaheuris-

tic approaches to solve instances with up to 300 customers and 600

commodities.

Some articles dealing with one-commodity variants are the fol-

lowing. Chalasani and Motwani (1999) study the special case of the

1-PDTSP where the delivery and pickup demands are all equal to one.

This problem is called Q-delivery TSP, where Q is the capacity of the

vehicle. Anily and Bramel (1999) consider the same problem with

the name Capacitated TSP with Pickups and Deliveries. Hernández-

Pérez and Salazar-González (2007) present an exact algorithm for

the 1-PDTSP solving instances with up to 200 customers. Hernández-

Pérez, Rodríguez-Martín, and Salazar-González (2009) describe a hy-

brid algorithm that combines Greedy Randomized Adaptive Search

Procedure and Variable Neighborhood Descent paradigms. Zhao, Li,

Sun, and Mei (2009) propose a Genetic Algorithm that on average

gives better results. Finally, Mladenović, Urošević, Hanafi, and Ilić

(2012) describe a General Variable Neighborhood Search improving

the best-known solution for all benchmark instances and solving in-

stances with up to 1000 customers.

As in most of the articles dealing with TSP variants, we have de-

cided to keep the assumption that each customer in the m-PDTSP

must be visited once. However, the literature on vehicle routing in-

cludes articles that do not make this assumption. In particular, some

authors address variants where a customer must be visited at most

once (e.g. Fischetti, González, & Toth, 1997; Ghiani & Improta, 2000),

Fig. 1. Infeasible path when m = 3 and Q = 3.

or where a customer must be visited at least once (e.g. Archetti &

Speranza, 2012; Nagy & Salhi, 2005; Nowak, Ergun, & White, 2009;

Salazar-González & Santos-Hernández, 2015). There are also arti-

cles on related problems considering more than one vehicle, as in

Psaraftis (2011), but, to our knowledge, in all of them each commodity

must be transported from one source to one destination. Our paper is

the first one proposing an approach for dealing with large instances

of a capacitated pickup-and-delivery problem where each commod-

ity may have several sources and several destinations.

The rest of the paper is organized as follows. Section 2 gives

the formal definition of the problem and presents the notation used

throughout the paper. Section 3 describes the heuristic algorithm to

solve the m-PDTSP. Section 4 is devoted to the tuning of the algo-

rithm’s parameters. Computational results are shown in Section 5,

and final remarks are made in Section 6.

2. Problem definition and notation

The m-PDTSP is defined on a complete directed graph G = (V, A).

The vertex set V = {1, . . . , n} represents the locations. Vertex 1 is the

depot and can be identified in the rest of the paper as a customer.

For each pair of customers i and j we have the arc a = (i, j) ∈ A and a

travel cost cij. Let K = {1, . . . , m} be the set of products. For each cus-

tomer i ∈ V and each product k ∈ K let qk
i

be the demand of product k

associated with i. When qk
i

> 0 customer i provides qk
i

units of prod-

uct k and when qk
i

< 0 customer i requires −qk
i

units of product k. We

assume that
∑

i∈V qk
i

= 0 for all k ∈ K, i.e., each product is conserved

through the route. The capacity of the vehicle is denoted by Q.

As mentioned above, contrary to what happens in the TSP, find-

ing a feasible solution (optimal or not) for the m-PDTSP is a prob-

lem with a hard computational complexity. Nevertheless, checking

if a given TSP solution is feasible for m-PDTSP can be done in O(mn)

time. Indeed, let us consider a path
−→
P defined by the vertex sequence

v1, . . . , vs for s ≤ n. Let lk
i
(
−→
P ) := lk

i−1
(
−→
P ) + qk

vi
be the load of the ve-

hicle when coming out from vi, considering that the vehicle enters

customer v1 with load lk
0
(
−→
P ). Notice that lk

i
(
−→
P ) could be negative if

lk
0
(
−→
P ) = 0 and, therefore, the minimum quantity of load of commod-

ity k for a feasible solution through the path
−→
P is − mins

i=0{lk
i
(
−→
P )}.

With this notation,
−→
P is an infeasible path if

s
max

i=0

{∑
k∈K

lk
i (

−→
P )

}
−

∑
k∈K

s

min
i=0

{
lk
i (

−→
P )

}
> Q . (1)

For example, consider an m-PDTSP instance with m = Q = 3 and

customers 2, 3, 4 and 5 with demand vectors ( − 1,−1,+1), ( +
1, +1, 0), ( − 1, 0, 0) and ( + 1, +1, 0), respectively. The path defined

by the customer sequence 2, 3, 4 and 5 is infeasible because

s
max

i=0

{
m∑

k=1

lk
i (

−→
P )

}
−

m∑
k=1

s

min
i=0

{
lk
i (

−→
P )

}
= 4 > Q .

Fig. 1 illustrates the calculations done in this example.
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