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a b s t r a c t

In this paper we discuss the polyhedral structure of the integer single node flow set with two possible values

for the upper bounds on the arc flows. Such mixed integer sets arise as substructures in complex mixed

integer programs for real application problems.

This work builds on results for the integer single node flow polytope with two arcs given by Agra and Con-

stantino, 2006a. Valid inequalities are extended to a new family, the lifted Euclidean inequalities, and a com-

plete description of the convex hull is given. All the coefficients of the facet-defining inequalities can be

computed in polynomial time.

We report on some computational experimentations for three problems: an inventory distribution problem,

a facility location problem and a multi-item production planning model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The description of the convex hull of elementary mixed integer

sets has been useful in the generation of strong valid inequalities for

general mixed integer problems. Particular cases of such elementary

sets are the Single Node Flow (SNF) sets (see Fig. 1):

{(y, x) ∈ Z
|N|
+ × R

|N| :
∑
t∈N

xt ≤ ( = )( ≥ )D, �t yt ≤ xt ≤ ut yt , t ∈ N}.

These sets are very common structures that occur after the aggre-

gation of variables and/or constraints of more complex fixed charge

capacitated network flow sets.

The single node flow sets have been studied for more than three

decades. Padberg, Roy, and Wolsey (1985) studied the case where

the yi are binary and the �j are null. They introduced the so called

flow cover inequalities and showed this class of valid inequalities suf-

fices to describe the convex hull of the feasible set when u j = U,∀ j ∈
N. The binary case was also studied in Goemans (1985). Roy and

Wolsey (1986) derived the so called generalized flow cover inequali-

ties and Stallaert (1997) introduced a new class of valid inequalities

by complementing binary variables. For a survey on valid inequali-

ties for this and other related sets from the perspective of lifting see

Louveaux & Wolsey, 2003. Special cases where considered by several
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authors. Constantino (1998) describes the convex hull of several re-

lated regions, in particular, the integer single node flow set with U a

large positive constant, U > D. Agra and Constantino (2006b) provide

a polyhedral characterization when � j = L and u j = U for all j. In Agra

and Doostmohammadi (2013) several inequalities are extended for

the case where there is a set-up variable associated to the node itself.

In this paper we describe the convex hull of the integer SNF set

with two possible values for the upper bounds on each arc capacity:

X = {(y, x) ∈ Z
|N|
+ × R

|N| :
∑
t∈N

xt ≤ D, 0 ≤ xt ≤ a1yt , t ∈ N1,

0 ≤ xt ≤ a2yt , t ∈ N2},
where {N1, N2} define a partition of N. We assume that the coeffi-

cients a1, a2 and D are positive integers and D > max {a1, a2}. While

in the classical SNF set the y variables are binary, here they are as-

sumed to be integer. Set X arises as relaxation of several fixed charge

capacitated network flow sets when arc capacities may assume one

of the two possible values. See Section 4 for several applications.

The description of P = conv(X ) by linear inequalities is obtained

from the description of integer single node flow set involving only

two arcs,

Z = {(y1, y2, x1, x2) : x1 + x2 ≤ D, 0 ≤ x1 ≤ a1y1,

0 ≤ x2 ≤ a2y2, y1, y2 integer},
given in Agra and Constantino (2006a). It has similarities with the

description of the convex hull of the integer single node flow set with

constant lower and upper bounds (Agra & Constantino, 2006b).
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Fig. 1. Single node flow problem.

In Section 2 we summarize the results concerned with the de-

scription of the SNF problem with two arcs and, in Section 3 we in-

troduce the lifted Euclidean inequalities to generalize those results

for the SNF problem with two possible values for the upper bounds.

Then, in Section 4 we test the inclusion of those inequalities in a

branch and cut scheme to solve three mixed integer programs: an

inventory-distribution problem, a facility location problem, and a lot-

sizing multi-item problem.

2. Euclidean inequalities for the integer single node flow set with

two arcs

The results in this section were published in Agra and Constantino

(2006a).

First we consider the single node flow set with one arc, {(y, x) ∈
Z+ × R+ : x ≤ D, x ≤ ay}. The convex hull of this set is completely de-

scribed by the inequalities x ≥ 0, x ≤ ay, x ≤ D, and x − γ y ≤ (a −
γ )�D/a�, where γ = D − a�D/a�. The last inequality is the so-called

Mixed Integer Rounding inequality (Nemhauser & Wolsey, 1988).

Next we consider the set with two arcs, Z. It is important to notice

that there are only two integer variables involved in this model and

so, for this particular structure, all the information needed to describe

conv(Z) can also be obtained from the 2-integer knapsack sets that

result from the elimination of the continuous variables.

All the extreme points of conv(Z) lie in the intersection of two of

the following three hyperplanes defined by x1 = a1y1,x2 = a2y2 and

x1 + x2 = D. Thus, every extreme point of conv(Z) has to satisfy one

of the following set of conditions: (i) x1 = a1y1, x2 = a2y2, (ii) x2 =
a2y2, x1 = D − x2, (iii) x1 = a1y1, x2 = D − x1,

In case (i) we have (y1, y2) ∈ Y≤ where Y≤ = {(y1, y2) ∈ Z
2+ :

a1y1 + a2y2 ≤ D}. In case (ii), noticing that 0 ≤ x1 ≤ a1y1 imply 0 ≤
D − a2y2 ≤ a1y1, we have (y1, y2) ∈ Y1 where

Y1 = {(y1, y2) ∈ Z
2
+ : a1y1 + a2y2 ≥ D, y2 ≤ D/a2}.

Note that constraint y2 ≤ D/a2 is implied by the non-negativity con-

straint x1 ≥ 0. Similarly, in case (iii) we have (y1, y2) ∈ Y2 where

Y2 = {(y1, y2) ∈ Z
2
+ : a1y1 + a2y2 ≥ D, y1 ≤ D/a1}.

Let us define Y1> = Y1 \ Y= and Y2> = Y2 \ Y= where Y= =
{(y1, y2) ∈ Z

2+ : a1y1 + a2y2 = D}.
In Agra and Constantino (2006a) it is shown that all the coeffi-

cients involved in the computation of the extreme points and facets

of the two dimensional polyhedra conv(Y≤), conv(Y1), conv(Y2) can

be obtained in O(log(D/ min{a1, a2})) elementary operations us-

ing a version of the Hirschberg and Wong’s algorithm, (Hirschberg

& Wong, 1976). This algorithm is based on the Euclidean Algo-

rithm. Hence, the inequalities we describe next, and are based

on these two dimensional polyhedra, are referred to as Euclidean

inequalities.

First we consider the valid inequalities obtained from the lifting of

facet-defining inequalities for conv(Y≤) (corresponding to case (i)).

Proposition 2.1. If α1y1 + α2y2 ≤ α is a valid facet-defining inequality

for conv(Y≤) then the inequality

β1(x1 − a1y1) + β2(x2 − a2y2) + α1y1 + α2y2 ≤ α (2.1)

is a valid facet-defining inequality for conv(Z), where

β1 = max

{
α1y1 + α2y2 − α

a1y1 + a2y2 − D
: (y1, y2) ∈ Y1>

}
and

β2 = max

{
α1y1 + α2y2 − α

a1y1 + a2y2 − D
: (y1, y2) ∈ Y2>

}
.

Next, from the lifting of the facet defining inequalities of conv(Y1)
the following family of valid inequalities for conv(Z) is obtained.

Proposition 2.2. If α1y1 + α2y2 ≥ α is a valid facet-defining inequality

for conv(Y1) containing only points in Y1> then the inequality

α1y1 + α2y2 ≥ α + β1(x1 + x2 − D) + β2(x2 − a2y2) (2.2)

is a valid facet-defining inequality for conv(Z), where

β1 = max

{
α − α1y1 − α2y2

D − a1y1 − a2y2

: (y1, y2) ∈ Y<

}
and

β2 = max

{
α − α1y1 − α2y2

a1y1 + a2y2 − D
: (y1, y2) ∈ Y2>

}
.

Finally we consider the lifting of the facet defining inequalities of

conv(Y2).

Proposition 2.3. If α1y1 + α2y2 ≥ α is a valid facet-defining inequality

for conv(Y2) containing only points in Y2> the inequality

α1y1 + α2y2 ≥ α + β1(x1 − a1y1) + β2(x1 + x2 − D) (2.3)

is a valid facet-defining inequality for conv(Z), where

β1 = max

{
α − α1y1 − α2y2

a1y1 + a2y2 − D
: (y1, y2) ∈ Y1>

}
and

β2 = max

{
α − α1y1 − α2y2

D − a1y1 − a2y2

: (y1, y2) ∈ Y<

}
.

In Agra and Constantino (2006a) it is shown that the lifting coeffi-

cients β1 and β2 in each Euclidean inequality (2.1), (2.2), (2.3), can be

obtained directly (in constant time) from the information required

to derive the corresponding two-dimensional polyhedra conv(Y≤),
conv(Y1), conv(Y2). So all the coefficients involved in the Euclidean

inequalities can be obtained in O(log(D/ min{a1, a2})) elementary

operations.

Now we consider two unbounded facet-defining inequalities that

can be obtained by the MIR procedure.

Proposition 2.4. The inequality

xt − γt yt ≤ (at − γt)�D/at� (2.4)

where γt = D − at�D/at�, and t ∈ {1, 2}, is valid for Z.

Theorem 2.5. (Agra and Constantino (2006a)) conv(Z) is completely

described by the trivial facet-defining inequalities and the families (2.1),

(2.2), (2.3) and (2.4).

Example 2.6. Consider the set, Z = {(x, y) ∈ R
2+ × Z

2+ : x1 + x2 ≤
1154, x1 ≤ 21y1, x2 ≤ 76y2} and the following restrictions

Y≤ = {y ∈ Z
2+ : 21y1 + 76y2 ≤ 1154},Y1 = {y ∈ Z

2+ : 21y1 + 76y2 ≥
1154, y2 ≤ 15},Y2 = {y ∈ Z

2+ : 21y1 + 76y2 ≥ 1154, y1 ≤ 54}. The

polyhedral description of these sets was given in Agra and Con-

stantino (2006a).

conv(Y≤) = {y ∈ R
2+ : y1 + 3y2 ≤ 54, 2y1 + 7y2 ≤ 109, 5y1 +

18y2 ≤ 274, 3y1 + 11y2 ≤ 166, y1 + 4y2 ≤ 60}. From

Proposition 2.1 we obtain the following facet-defining Euclidean

inequalities.

y1 + 3y2 + 1

1
(x1 − 21y1) + 1

14
(x2 − 76y2) ≤ 54

2y1 + 7y2 + 1

1
(x1 − 21y1) + 1

6
(x2 − 76y2) ≤ 109

5y1 + 18y2 + 1

1
(x1 − 21y1) + 1

3
(x2 − 76y2) ≤ 274

3y1 + 11y2 + 1

2
(x1 − 21y1) + 1

2
(x2 − 76y2) ≤ 166

y1 + 4y2 + 1

7
(x1 − 21y1) + 1

7
(x2 − 76y2) ≤ 60
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