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a b s t r a c t

The Wiener-Hopf factorization of a complex function arises in a variety of fields in applied mathematics such

as probability, finance, insurance, queuing theory, radio engineering and fluid mechanics. The factorization

fully characterizes the distribution of functionals of a random walk or a Lévy process, such as the maxi-

mum, the minimum and hitting times. Here we propose a constructive procedure for the computation of

the Wiener-Hopf factors, valid for both single and double barriers, based on the combined use of the Hilbert

and the z-transform. The numerical implementation can be simply performed via the fast Fourier transform

and the Euler summation. Given that the information in the Wiener-Hopf factors is strictly related to the

distributions of the first passage times, as a concrete application in mathematical finance we consider the

pricing of discretely monitored exotic options, such as lookback and barrier options, when the underlying

price evolves according to an exponential Lévy process. We show that the computational cost of our proce-

dure is independent of the number of monitoring dates and the error decays exponentially with the number

of grid points.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper provides a new procedure to determine the finite-time

distribution of the discrete extrema and of the hitting times of one

or two barriers for a process with independent and identically dis-

tributed increments, such as a Lévy process. Spitzer (1956) provided

a closed formula for the z-transform (or moment generating func-

tion or discrete Laplace transform) of the characteristic function of

the extrema of a random walk observed on a set of discrete dates.

Up to now the concrete application of the Spitzer identity has been

difficult because it requires the Wiener-Hopf (WH) factorization of

a function defined in the complex plane, a mathematical problem

that concerns a variety of fields in applied mathematics. Indeed, this

factorization cannot be achieved analytically except in few cases,

or its computation turns out to be very demanding requiring the

numerical evaluation of a multidimensional integral in the complex
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plane. In addition, with regard to a general Lévy process, little is

known for the two-barriers case.

The key contributions of our paper are the following. First of all,

we provide a constructive procedure for performing the WH factor-

ization. More precisely, we express the WH factors arising in the

Spitzer identity in terms of the Plemelj–Sokhotsky relations, which

allow us to compute the WH factors through the Hilbert trans-

form. The latter is then approximated via a sinc function expansion

(Stenger, 1993), which guarantees an exponential decay of the ap-

proximation error on the number of grid points.

Moreover, our methodology can deal with both a single and a

double barrier. The solution in the second case is of interest in itself

because it solves a long-standing problem related to an efficient

computation of the WH factors in the presence of two barriers. The

double-barrier case did not admit a simple feasible solution up to

now, except under few special assumptions on the structure of the

Lévy process. One has to solve two coupled integral equations, which

can be achieved by factorizing a 2 × 2 matrix of functions, but a gen-

eral analytical method for this more difficult problem has not been

found yet (Jones, 1991). Here, as the second main contribution of the

paper, we constructively propose a fixed-point algorithm based on an

extension of the single-barrier case that achieves a fast convergence.
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As a concrete application, we contribute to the mathematical fi-

nance literature related to the pricing of exotic options, such as bar-

rier and lookback. Pricing derivatives, especially exotic options, is

a challenging problem in the operations research literature (to cite

a few, see Cai, Chen, & Wan, 2009; Date & Islyaev, 2015; Dingeç &

Hörmann, 2012; Feng & Linetsky, 2008b; Giesecke & Smelov, 2013;

Jin, Li, Tan, & Wu, 2013; Sesana, Marazzina, & Fusai, 2014; Wang & Tan,

2013). The application of transform techniques in mathematical fi-

nance is rather recent. The first and most important contributions are

probably the articles by Heston (1993) and Carr and Madan (1999),

where the authors show how to price European options with non-

Gaussian models exploiting the Fourier transform. Similar techniques

were developed later for path-dependent derivatives (e.g. Cai et al.,

2009; Feng & Linetsky, 2008a; Green, Fusai, & Abrahams, 2010). Our

paper provides a unified framework and a fast operational method

for pricing barrier and lookback (or hindsight) options when the un-

derlying asset evolves as an exponential Lévy process. In addition,

the monitoring condition, e.g., the event that the underlying asset

value falls below a given barrier for a down-and-out barrier option,

is assumed to be controlled at discrete time intervals. Our procedure,

based on the new WH factorization method, has a computational cost

independent of the number of monitoring dates. This is possible be-

cause the inversion of the discrete Laplace transform is performed

via the Euler acceleration, which bounds from above the number of

WH factorizations to be computed. Moreover, at least with regard to

single-barrier and lookback options, the method provides exponen-

tial order of convergence due to the fact that the factorization is per-

formed remaining in the complex plane. The existing pricing meth-

ods are based on the backward recursive formula (e.g. Fusai, Longo,

Marena, & Recchioni, 2009; Fusai, Marazzina, Marena, & Ng, 2012; Fu-

sai & Recchioni, 2007; Jackson, Jaimungal, & Surkov, 2008; Lord, Fang,

Bervoets, & Oosterlee, 2008), and on exploiting the convolution struc-

ture of the transition density of the Lévy process by performing the

computations efficiently and fast using the FFT, which leads to a CPU

time that grows as O(M log M), where M is the number of grid points.

However, all the above cited methods are characterized by a polyno-

mial decay of the error with M. This order of accuracy is related to the

fact that the backward procedure for barrier options involves a con-

volution, that can be computed in the complex plane, and a projec-

tion, which is applied in the real plane, to take into account the pres-

ence of the barrier. A noticeable exception was presented by Feng and

Linetsky (2008a, 2009), who reformulated the backward procedure

for barrier and lookback options in terms of the Hilbert transform,

so that all steps are performed in the complex plane. Computing the

Hilbert transform with a sinc function expansion, they achieved an

exponential decay of the error. However, the computational cost of

all these methods, including the one by Feng and Linetsky, increases

linearly with the number of monitoring dates.

Finally, the factorization procedure introduced here is quite gen-

eral and can also be applied, without any additional complication,

to continuously-monitored contracts. Even the best available method

listed above, i.e., that by Feng and Linetsky, does not have this feature.

Even if the Spitzer identity has already been used in option pric-

ing (e.g. Atkinson & Fusai, 2007; Borovkov & Novikov, 2002; Green

et al., 2010; Lewis & Mordecki, 2008) and the present paper is mainly

focused on this kind of applications, our method goes well beyond

option pricing and opens up the way to a more extensive use of the

Spitzer identity and the WH factorization in a variety of non-financial

fields; for physics, see a recent review by Bray, Majumdar, and Schehr

(2013). In this regard we would like to mention the applicability to

queuing theory due to the strict connection between random walks

and queues, see Lindley (1952) for pioneering contributions as well

as Cohen (1975), Prabhu (1974) and Asmussen (1987); 1998). Fur-

ther applications include insurance (Gerber, Shiu, & Yang, 2013) and

sequential testing (Siegmund, 1985). Finally, the WH factorization

arises in many branches of engineering, mathematical physics and

applied mathematics. This is testified by the thousands of papers

published on the subject since its conception. A review of the dif-

ferent applications is given by Lawrie and Abrahams (2007).

The structure of the paper is the following. Section 2 introduces

the Spitzer identity and its relationship with the WH factorization,

proposing, via the interpretation of the Plemelj–Sokhotsky relations

as Hilbert transforms, a new operational method to perform the fac-

torization and therefore to compute the distributions of the mini-

mum and the maximum of a Lévy process, as well as the joint dis-

tributions of the process at maturity and of its minimum or maxi-

mum over the whole time interval. Section 3 shows how the proposed

general methodology can be implemented efficiently and accurately

computing the Hilbert transform via a sinc expansion; we also dis-

cuss the inversion of the z-transform and its acceleration through the

Euler summation rule to make the computational cost independent

of the number of monitoring dates. Section 4 deals with the pricing

problem for lookback and barrier options, describing how our pro-

cedure is fast as well as accurate. This is validated numerically in

Section 5 with a variety of numerical experiments.

2. Spitzer identity and Wiener-Hopf factorization

We consider a Lévy process X(t), i.e., a stochastic process with

X(0) = 0 and independent and identically distributed increments.

The Lévy–Khincine formula states that the characteristic function of

the process is given by �(ξ, t) = E[eiξX(t)] = eψ(ξ )t , where ψ is the

characteristic exponent of the process,

ψ(ξ ) = iaξ − 1

2
σ 2ξ 2 +

∫
R

(eiξη − 1 − iξη1|η|<1)ν(dη). (1)

The Lévy–Khincine triplet (a, σ , ν) fully defines the Lévy process X(t).

In several applications in queueing theory, insurance and finan-

cial mathematics, the key point is the determination of the law of

the extrema of the Lévy process observed on an equally-spaced grid

Xn = X(n�), n = 0, . . . , N, where � > 0 is the time step, i.e., the dis-

tance between two consecutive monitoring dates, which is assumed

constant. We define the processes of the maximum MN and of the

minimum mN up to the Nth monitoring date as

MN = max
n=0,...,N

Xn and mN = min
n=0,...,N

Xn. (2)

To distinguish the present case, where the above processes, albeit

evolving in continuous time, are recorded only at discrete times, the

terminology discrete versus continuous monitoring is used.

In particular, besides the distribution PX(x, N) of the Lévy pro-

cess at maturity T = N�, we will need the distributions Pm(x, N)

of the minimum and PM(x, N) of the maximum over the whole set

{n = 0, . . . , N}, as well as the joint distributions PX, m(x, N) or PX, M(x,

N) of the process at maturity and of its minimum or maximum over

the interval with respect to a lower (upper) barrier l (u), and the joint

distribution of the triplet (XN, mN, MN), PX, m, M(x, N). These distribu-

tions are defined as

dPX (x, N) = pX (x, N)dx = P[XN ∈ [x, x + dx)] (3)

dPm(x, N) = pm(x, N)dx = P[mN ∈ [x, x + dx)] (4)

dPM(x, N) = pM(x, N)dx = P[MN ∈ [x, x + dx)] (5)

dPX,m(x, N) = pX,m(x, N)dx = P[XN ∈ [x, x + dx), mN > l] (6)

dPX,M(x, N) = pX,M(x, N)dx = P[XN ∈ [x, x + dx), MN < u] (7)

dPX,m,M(x, N) = pX,m,M(x, N)dx

= P[XN ∈ [x, x + dx), mN > l, MN < u]. (8)
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