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a b s t r a c t

Various shock models have been extensively studied in the literature, mostly under the assumption of the

Poisson process of shocks. In the current paper, we study shock models under the generalized Polya process

(GPP) of shocks, which has been recently introduced and characterized in the literature (see Konno (2010)

and Cha, 2014). Distinct from the widely used nonhomogeneous Poisson process, the important feature of

this process is the dependence of its stochastic intensity on the number of previous shocks. We consider

the extreme shock model, where each shock is catastrophic for a system with probability p(t) and is harm-

less with the complementary probability q(t) = 1 − p(t). The corresponding survival and the failure rate

functions are derived and analyzed. These results can be used in various applications including engineering,

survival analysis, finance, biology and so forth. The cumulative shock model, where each shock results in the

increment of wear and a system’s failure occurs when the accumulated wear reaches some boundary is also

considered. A new general concept describing the dependent increments property of a stochastic process is

suggested and discussed with respect to the GPP.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Various shock models have been extensively studied and applied

to various topics in reliability (see, e.g., Cha & Finkelstein (2010),

Chakravarthy (2012), Frostig & Kenzin (2009), Huynh, Castro & Bar-

ros (2012), Montoro-Cazorla and Pérez-Ocón (2011)). In the liter-

ature, most of the shock models have been developed under the

assumption of the Poisson process of shocks (see, e.g., Finkelstein

& Cha, 2013; Nakagawa, 2007 and references therein). The non-

homogeneous Poisson process (NHPP), due to its relative simplicity,

is the most popular point process in numerous engineering and bio-

logical applications and, specifically, in shock modeling. For instance,

the famous Strehler–Mildvan model of human mortality (Strehler &

Mildvan, 1960) considers the Poisson process of shocks (demands for

energy) affecting an organism, which eventually results in ‘justifica-

tion’ of the Gompertz law of human mortality. Various Poisson shock

models are usually mathematically tractable and allow for rather

simple and compact expressions for the probabilities of interest (see,

e.g., Al-Hameed & Proschan, 1973; Cha & Finkelstein, 2009, 2011; Cha

& Mi, 2007; Esary, Marshal, & Proschan, 1973 to name a few). It is

worth mentioning that shock models governed by the renewal pro-

cesses, which have a simple probabilistic nature, are already more

∗ Corresponding author. Tel.: +82 232776856; fax: +82 232773607.

E-mail addresses: jhcha@ewha.ac.kr (J.H. Cha), FinkelM@ufs.ac.za (M. Finkelstein).

cumbersome and approximations and numerical methods should be

used (Finkelstein, 2003; Kalashnikov, 1997).

It is well known that the NHPP possesses the property of indepen-

dent increments that along with other properties enables reasonably

simple probabilistic reasoning. However, the assumption of indepen-

dence of increments, in fact, can be too restrictive to describe most

of the real life problems. For instance, in various shock models, a sys-

tem’s susceptibility to shocks increases with the number of shocks

experienced previously. Thus a minor or even a negligible shock that

had occurred during the initial lifetime period can become harmful

and even catastrophic with time.

Recently, a new counting process, the ‘generalized Polya process

(GPP)’, has been studied and characterized in Cha (2014) (see also

Konno (2010) for the formal definition of this process). In the cur-

rent paper, we consider the GPP as our baseline process for the cor-

responding shock models. This process is defined via its stochastic

intensity that takes into account the number of previous shocks and,

in this way, it creates a rather simple but effective model which de-

pends on the history. The GPP defined in this way possesses a posi-

tive dependence property which means that the susceptibility of the

event occurrence in an infinitesimal interval of time increases as the

number of events in the previous interval increases. This property

is definitely relevant to various applications, where the assumption

of the independent increments of the NHPP was often used just for

simplicity.

http://dx.doi.org/10.1016/j.ejor.2015.11.032

0377-2217/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2015.11.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.11.032&domain=pdf
mailto:jhcha@ewha.ac.kr
mailto:FinkelM@ufs.ac.za
http://dx.doi.org/10.1016/j.ejor.2015.11.032


136 J.H. Cha, M. Finkelstein / European Journal of Operational Research 251 (2016) 135–141

We focus on the extreme shock model for the case when the

shock process follows the GPP. Each shock in this model is consid-

ered to be critical (catastrophic) to a system with the time depen-

dent probability p(t) and harmless with a complementary probabil-

ity q(t) = 1 − p(t) (independently of ‘everything else’). The survival

probability of a system (without critical shocks) is of interest. This

is a classical reliability setting with a well-known solution for the

NHPP process of shocks (Beichelt & Fischer, 1980; Block, Borges &

Savits, 1985; Finkelstein, 2008). However, the problem is more com-

plex for the GPP case and the corresponding solution should be care-

fully derived, which is the main result of Section 2. In addition,

in this section, some generalizations to the case of the cumulative

shock model are briefly discussed when a failure of a system oc-

curs if the accumulated wear (damage) reaches some given thresh-

old level. The emphasis of the paper is on the analysis of the ob-

tained survival function and the corresponding failure rate. There-

fore, in Section 3, we derive the relation for the failure rate using

a different (point process) approach that allows for this important

analysis. Furthermore, a new general concept describing the depen-

dent increments property of a stochastic process is suggested and dis-

cussed with respect to the GPP. Finally, concluding remarks are given

in Section 4.

The new meaningful analysis performed in this paper will con-

stitute a basis for further development of the model for various ap-

plications in engineering, survival analysis, finance, biology and so

forth.

2. Extreme shock model

A new counting process, called the ‘Generalized Polya Process’

(GPP) has been recently described based on the notion of stochastic

intensity and its properties have been studied in detail in Cha (2014)

(see also Konno (2010)) . As its definition was based on the corre-

sponding stochastic intensity, let us first briefly discuss this notion in

a way suitable for further presentation.

Let {N(t), t ≥ 0} be a simple (or orderly) point process and Ht− ≡
{N(u), 0 ≤ u < t} be the history (internal filtration) of the process in

[0, t), i.e., the set of all point events in [0, t). Observe that Ht− can

equivalently be defined in terms of N(t−) and the sequential arrival

points of the events T0 ≡ 0 ≤ T1 ≤ T2 ≤ . . . ≤ TN(t−) < t in [0, t), where

Ti is the time from 0 until the arrival of the ith event in [0, t). The point

processes can be conveniently mathematically described by using the

concept of the stochastic intensity (the intensity process) λt , t ≥ 0

(Aven & Jensen, 1999, 2000). As discussed, e.g., in Cha and Finkelstein

(2011), and Cha (2014), the stochastic intensity λt of an orderly point

process {N(t), t ≥ 0} is defined as the following limit:

λt = lim
�t→0

Pr[N(t, t + �t) = 1|Ht−]

�t
= lim

�t→0

E[N(t, t + �t)|Ht−]

�t
,

(1)

where N(t1, t2), t1 < t2, represents the number of events in [t1, t2).

The stochastic intensity defined in (1) has the following heuristic in-

terpretation: λt dt = E[dN(t)|Ht−] (Aven & Jensen, 1999), where λt

reduces to the ordinary failure (hazard) rate of a random variable

when Ht− = {N(t−) = 0} meaning that there were no events in [0, t).

It is well known that for the NHPP with intensity function λ(t), the

stochastic intensity is deterministic and equal to λ(t), whereas for the

renewal process with the failure rate of the underlying distribution

λ(t), it is given by the following relationship λt = λ(t − TN(t−)), t ≥
0, where TN(t−), as usual, denotes a random time of the last renewal

in [0, t) (see, e.g., Finkelstein & Cha (2013)).

Now we are ready to provide a formal definition of the GPP

(Cha, 2014).

Definition 1. Generalized Polya Process (GPP)

A counting process {N(t), t ≥ 0} is called the Generalized Polya

Process (GPP) with the set of parameters (λ(t), α,β), α ≥ 0, β > 0, if

(i) N(0) = 0;

(ii) λt = (αN(t−) + β)λ(t).

As mentioned in Cha (2014), the GPP with (λ(t), α = 0, β = 1) re-

duces to the NHPP with the intensity function λ(t) and, accordingly,

the GPP can be understood as a generalized version of the NHPP. It

should be noted that recently a similar model was studied in Asfaw

and Linqvist (2015) (see also Le Gat, 2014; Babykina & Couallier,

2014). However, the focus of these papers was different, mostly con-

sidering the corresponding issues of statistical inference and related

frailty modeling. It is also clear that, by suitable reparameterization,

we can always transform the model to the case when β = 1. How-

ever for the sake of further presentation (e.g., the ‘restarting prop-

erty’ based on Definition 1 is used in this section for discussing the

residual lifetime of the system and for characterizing the dependence

structure of the GPP in Section 3), we keep the above setting as in the

original paper by Cha (2014).

Consider now a system subject to the GPP of shocks with the set

of parameters (λ(t), α,β). Let it be ‘absolutely reliable’ in the ab-

sence of shocks. As before, T0 ≡ 0 ≤ T1 ≤ T2 ≤ . . . denote the sequen-

tial arrival times of the GPP. Assume that a shock that had occurred

at time t results in the system’s failure with probability p(t) and is

harmless to the system with probability q(t) = 1 − p(t) independent

of everything else. This shock model is usually called in the literature

the ‘extreme shock model’. First of all, within the frame work of the

extreme shock model and keeping in mind various applications, we

will be interested in the probability of survival of our system subject

to the GPP. To derive the survival probability, we need the following

supplementary results.

Lemma 1. For the GPP with the set of parameters (λ(t), α,β), α > 0,

β > 0, the following properties hold:

(i) The distribution of N(t) is given by

P(N(t) = n) = �(β/α + n)

�(β/α)n!
(1 − exp {−α�(t)})n

×(exp {−α�(t)}) β
α , n = 0, 1, 2, . . .

(ii) The conditional joint distribution of (T1, T2, . . . , TN(t)) given that

N(t) = n is

f(T1,T2,...,TN(t)|N(t))(t1, t2, . . . , tn|n)

= n!

n∏
i=1

αλ(ti) exp{α�(ti)}
exp{α�(t)} − 1

, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,

where �(t) ≡
t∫

0

λ(u)du.

For the proofs of (i) and (ii), see the proofs of Theorems 1 and 3 in

Cha (2014), respectively.

It follows from Lemma 1 that

E[N(t)] = β

α
(exp{α�(t)} − 1).

Therefore, the intensity function of the GPP is defined as

lim
�t→0

1

�t
P(N(t + �t) − N(t) = 1)

= d

dt
E[N(t)] = βλ(t) exp{α�(t)}.

Thus even for the constant baseline function, λ(t) = λ, the inten-

sity function is exponentially increasing which reflects the cumula-

tive effect of the previous events on the probability of occurrence of

an event at the current instant of time.
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