
European Journal of Operational Research 251 (2016) 142–147

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Stochastics and Statistics

Switching regression metamodels in stochastic simulation

M. Isabel Reis dos Santos a,∗, Pedro M. Reis dos Santos b

a Department of Mathematics and Centre for Management Studies, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
b Department of Computer Science and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

a r t i c l e i n f o

Article history:

Received 5 February 2015

Accepted 27 November 2015

Available online 4 December 2015

Keywords:

Simulation

Metamodel

Regression mixture

Maximum likelihood

a b s t r a c t

Simulation models are frequently analyzed through a linear regression model that relates the input/output

data behavior. However, in several situations, it happens that different data subsets may resemble different

models. The purpose of this paper is to present a procedure for constructing switching regression metamodels

in stochastic simulation, and to exemplify the practical use of statistical techniques of switching regression in

the analysis of simulation results. The metamodel estimation is made using a mixture weighted least squares

and the maximum likelihood method. The consistency and the asymptotic normality of the maximum likeli-

hood estimator are establish. The proposed methods are applied in the construction of a switching regression

metamodel. This paper gives special emphasis on the usefulness of constructing switching metamodels in

simulation analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Linear regression analysis plays an important role in many fields. A

regression metamodel may be used for interpreting the input/output

of a simulation model and, consequently, for analysing the real world

data. A simulation metamodel, usually a simple mathematical func-

tion, is an approximation of the input/output function that is defined

by the underlying simulation model (Kleijnen, 2008). Kleijnen (1975)

proposed some statistical tools for making the regression metamod-

els commonly usable, and the most popular methods for construct-

ing simulation metamodels are the polynomial regression ones; see

also (Biles, 1974). The construction and use of metamodels continues

today and comprises several types of metamodels like, for example,

linear regression metamodels (Kleijnen, 1992), nonlinear regression

metamodels (Santos & Nova, 2006; Santos & Santos, 2008), Kriging

metamodels (Kleijnen, 2009) among others. A metamodel may be

used with different purposes; for example, it may be used as a surro-

gate of a simulation model or as a building block inside a simulation

model (Santos & Santos, 2009).

However, in simulation practice sometimes we may obtain a

poor fit when a single regression metamodel is used. It happens

when simulation model behavior isn’t likely to follow one unique

regime, and that different subsets of the input/output data may fa-

vor different submodels. A different approach may be using switch-

ing regression techniques for constructing metamodels in stochastic
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simulation. A switching regression model assumes that we have a

random variable y such that E[y] is a linear function of explanatory

variables with y ∼ N(xT θs, σ 2
s ) with probability λs, s = 1, . . . , S. So,

there are a set of S regression models characterized by the parame-

ters (θ1, σ 2
1 ), . . . , (θS, σ

2
S ), and for each observation pair (yi, xi) the

indicator λsi chooses one among several models to obtain yi; the un-

known parameters θ1, σ 2
1
, . . . , θS, σ 2

S
are estimated from the data.

Switching regression models are dated to at least (Quandt, 1958),

and find applications in a wide variety of areas such as economics

(Chen, 2007; McKenzie & Takaoka, 2008), finance (Fukuda, 2009), and

marketing (DeSarbo & Cron, 1988). Goldfeld and Quandt (1973) in-

troduced the Markov-switching models, in which a latent state vari-

able (instead of a fixed probability) following a Markov-chain controls

regime shifts, meanwhile (Quandt, 1972) studies a mixture of nor-

mal linear regression models where the choice between regimes is

based on fixed probabilities. In the clusterwise linear regression con-

text, Späth (1979) considers the regression problem where the error

sums of squares is computed over all regimes (referred by clusters) is

minimized using an exchange algorithm. Lau, Leung, and Tse (1999)

propose a programming procedure to estimate clusterwise linear re-

gression models based on combinatorial optimization problems; see

also Carbonneau, Caporossi, and Hansen (2011). Quandt (1972) pro-

posed the maximum likelihood method for estimating switching re-

gressions, and Kiefer (1978) studied the problem of data covering two

regression regimes and maximum likelihood methods for unknown

parameters estimation. In the maximum likelihood context, DeSarbo

and Cron (1988) generalize the Quandt (1972) and Hosmer (1974)

stochastic switching regression models to more than two regimes.

This article extend these developments to the construction of

simulation switching regressions metamodels, where the unknown
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Table 1

Illustrative data.

xi yij

1 8.705 8.105 5.200

2 8.760 9.160 3.700

3 9.715 9.115 3.100

4 9.670 10.170 1.500

5 10.725 10.425 1.000

Fig. 1. Graphical representation of data from Table 1.

variances are estimated using the replications available from a simu-

lation experiment and the switching probabilities may vary with the

experimental points, and are also estimated from de data.

This paper is organized as follows. A framework of the metamodel

with relation to simulation metamodels and switching regression

models is described in Section 2. In Section 3 the estimation proce-

dure for constructing switching regression metamodels is presented.

Section 4 describes an application example related to a simple man-

ufacturing process. The conclusions are presented in Section 5.

2. Simulation metamodels

A simulation model viewed as a black-box may be represented

trough a mathematical function g(., .) as

y = g(d, r0)

where, y is a vector of simulation outputs, d is the vector of input

factors of the simulation model and r0 is a vector of pseudo-random

seeds. Typically, one metamodel is constructed for each component

of y, so we consider metamodels where y has one component

y = f (x; θ) + ε

where θ is the unknown metamodel parameters, and x is a vector

of metamodel inputs; for example, in the simulation of the M/M/1

system we may choose x1 = d1/d2 = λ/μ, where λ is the arrival rate

and μ is the service rate. If f is a linear regression function, then a

common set of regression parameters is enough for describing the

input/output characteristics of the simulation program and, conse-

quently, the simulation data may be described with only one regime.

However, sometimes the input/output data exhibit some heterogene-

ity which produces the variation of the set of regression parameters

over the data and, consequently, one regime may not be adequate for

approximating the simulation input/output data. Switching regres-

sion metamodels (mixture of linear regressions) may help to over-

come the lack-of-fit problem in these situations.

An illustrative example, where the usual regression leads to mis-

leading results, is given in Table 1 and is depicted in Fig. 1. The ad-

justed metamodel based on all data points is

ŷ = 0 x + 7.270

and we may observe that this line poorly approximates the data. If the

observations are split into two subsets then the following metamodel,

which allows a good fit, is obtained

ŷ =
{

−1.06 x + 6.080, with probability λ̂1 = 2/3 (subset 1)

0.53 x + 7.865, with probability λ̂2 = 1/3 (subset 2)

3. Switching regression metamodels in stochastic simulation

Consider an experimental design consisting of n different design

points, {xil : i = 1, . . . , n; l = 1, . . . , p}, with p explanatory variables.

For each design point i, r independent replications of the simula-

tion model are carried out and the experiment yields �i j = {z̃i jk : i =
1, . . . , n, j = 1, . . . , r, k = 1, . . . , o}, where z̃ is the relevant system re-

sponse, with o observations per replication. For each experimental

point i and replicate j the observations (z̃i j1, z̃i j2, . . . z̃i jo) are split into

S regimes sequentially ordered:

regime 1: �1i j = {zi, j,1, zi, j,2, . . . , zi, j,t1i j
}

regime 2: �2i j = {zi, j,t1i j +1, zi, j,t1i j +2, . . . , zi, j,t1i j +t2i j
}

regime 3: �3i j = {zi, j,t1i j +t2i j +1, zi, j,t1i j +t2i j +2, . . . , zi, j,t1i j +t2i j +t3i j
}

.

.

.

.

.

.

regime S: �Si j = {zi, j,t1i j +t2i j +···+ti jS−1+1, zi, j,t1i j +t2i j +···+ti jS−1+2, . . . , zi, j,t1i j +t2i j +...+tSi j
}

where

�i j =
S⋃

s=1

�si j

The probability associated with each set �sij is estimated by

λ̂si· = 1

r

r∑
j=1

λ̂si j where λ̂si j = #�si j

#�i j

= tsi j

o
(1)

where #� represents the number of elements belonging to the set �.

If λ̂si ≈ 1 for some i and s = 1, . . . , S, then we may assume one

regime only at experimental point i. Since λs may depend on the ex-

perimental point, when predicting the response at x between xi and

xi+1 the corresponding probabilities may be computed using, for ex-

ample, interpolation of first degree. For a single input:

λ̂s(x) = λ̂si + x − xi

xi+1 − xi

(λ̂s,i+1 − λ̂s,i)

For each regime s = 1, . . . , S, and replication j of each design point

i a measure of interest ysij is determined from zi, j, k. For instance, the

mean value for each regime is

ysi j = 1

tsi j

k2i j∑
k=k1i j

zi, j,k

where

k1i j = 1 +
s−1∑
m=1

tmi j and k2i j =
s∑

m=1

tmi j

For each experimental point i the mean and variance values of the

measure of interest each regime can now be computed

ȳsi· = 1

r

r∑
j=1

ysi j

σ̂ 2
si = 1

r − 1

r∑
j=1

(ysi j − ȳsi·)2 (2)
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