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a b s t r a c t

We study infinite-horizon, optimal switching problems for underlying processes that exhibiting “fast” mean-

reverting stochastic volatility. We obtain closed-form analytic approximations of the solution for the resulting

quasi-variational inequalities, that provide quantitative and qualitative results for the effects of multi-scale

variability of the underlying process on the optimal switching rule. The proposed methodology is applicable

to a number of operations research problems involving switching flexibility.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An important class of problems arising in operations research are

the so-called optimal switching problems, in which the objective is

to find the optimal time to initiate or terminate a process, subject to

uncertainty. This general formulation finds numerous applications in

manufacturing and logistics (e.g. Benaroch, Webster, & Kazaz, 2012),

networked systems, optimal control of energy systems (see for ex-

ample Parpas and Webster, 2014; Ho and Parpas, 2014, and refer-

ences therein), decision support (e.g. technology choice in Bobtcheff

& Villeneuve, 2010), production management and capacity choice

(see, e.g. Dixit, 1989; Trigeorgis, 1993; Pindyck, 1988; McDonald &

Siegel, 1985), but also in fields such as natural resource management

(see, e.g. Brennan & Schwartz, 1985; Paddock, Siegel, & Smith, 1988),

transportation and shipping, etc. (Kavussanos, Tsekrekos, & Cullinane,

2011; Sødal, Koekebakker, & Aadland, 2008).

A key issue in all the above problems is the determination of

the stochastic model that can represent the random evolution of the

process in question, hereafter called the underlying. Depending on
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the particular concrete application in mind, the underlying can be in-

terpreted in different ways, for instance a product price in manufac-

turing, an input price like the price of electricity in energy systems, a

commodity price in natural resource management, etc.

A useful class of models for the evolution of the underlying is

the family of Itô processes, which lead to convenient formulations of

switching problems in terms of elliptic or parabolic quasi-variational

inequalities (see for example Bensoussan & Lions, 1984; Brekke &

Øksendal, 1994), the solution of which provides useful insights on the

optimal switching decision rule. Most of these models adopt the as-

sumption of constant volatility for the underlying process, mainly for

analytical and numerical convenience. However, there is ample em-

pirical evidence that often the underlying displays stochastic volatil-

ity effects, which may develop on different time scales (Eydeland

& Wolyniec, 2003; Hikspoor & Jaimungal, 2008). In particular, one

characteristic feature of volatility is that its mean-reversion rate is

quite “fast”, as compared to the time scale of evolution of the other

state variables, a feature referred to as fast mean-reverting stochastic

volatility. This has also been documented for the volatility of finan-

cial asset prices (Alizadeh, Brandt, & Diebold, 2002; Fouque, Papan-

icolaou, Sircar, & Sølna, 2003a, 2003b; Hillebrand, Fomby, & Terrell,

2006), and stochastic volatility has played a prominent role in the val-

uation and hedging of financial derivatives, explaining many stylized

facts of such markets. A comprehensive review related to stochas-

tic volatility in financial markets is Taylor (1994), and a multi-scale

approach to the problem of hedging and pricing financial deriva-

tives has been developed in Fouque, Papanicolaou, Sircar, and Sølna

(2011), leading to increased recent activity in this field (see for
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example Souza & Zubelli, 2011; Zhu & Chen, 2011a; 2011b; Chen &

Zhu, 2012).

Despite the fact that asset and commodity prices have been doc-

umented to exhibit fast mean-reverting volatility, the study of its ef-

fects on optimal switching policies has been overlooked. It is the aim

of this paper to examine optimal switching decisions under multi-

scale stochastic volatility, and assess its quantitative and qualitative

effects.

To accomplish this, we formulate and solve infinite-horizon, op-

timal switching problems driven by a general class of stochastic

volatility models that exhibit fast mean-reversion. We employ the

perturbation method of Fouque, Papanicolaou, and Sircar (2000) on

the resulting quasi-variational inequalities, a fact that allows us to ap-

proximate the full problem with a sequence of simplified and man-

ageable problems, each one offering a “correction” of different order

to the decision rule corresponding to the constant-volatility model.

These corrections, that are the effect of fast stochastic volatility, are

derived in closed-form, allowing one to analytically approximate the

solution of the general switching problem up to any desired order.

Our analytic approach is important as it lends itself easily to compar-

ative statics that are of value to decision-makers dealing with pro-

cesses or projects that can be switched from and to an idle/active

mode, contingent on state variables that exhibit random evolution

on multiple scales. Moreover, as the full multi-scale optimal switch-

ing problem is difficult and tricky to handle by numerical methods,

our analytic results offer useful benchmarks for the numerical anal-

ysis of the full problem. Our general results are illustrated in terms

of the extension of the switching problem in Dixit (1989), for multi-

scale volatility.

The rest of the paper is organized as follows: Section 2 starts by

presenting a general optimal switching problem under fast mean-

reverting stochastic volatility, and proceeds by providing a general

perturbative framework for the analytic approximation of the so-

lution to any desired order. In Section Section 3 we illustrate the

method for the multi-scale volatility extension of the switching prob-

lem in Dixit (1989) and provide comments on the qualitative and

quantitative effects of multi-scale volatility on the optimal policy. Fi-

nally, Section 4 concludes the paper.

2. Optimal switching policy under fast mean-reverting

stochastic volatility

Consider a risk-neutral decision maker contemplating a

project/process that can operate in two modes (active or idle)

and which, depending on the mode, produces a stochastic flow

payoff Rq(P) (q = 0 is idle, q = 1 active), where P is a commodity

or product price (underlying) that can be modeled by a diffusion

process. Transition from one mode to the other can take place in-

stantaneously and for an unlimited number of times, but at constant

fixed costs, each time a transition decision is made.1

The problem we consider here, is that of finding the optimal

switching decision rule, for a wide class of diffusion models for the

price process, exhibiting dynamics on fast/slow time scales, and in

particular providing semi-analytic approximations for the decision

rule. This framework allows one to avoid the need for numerical

treatment and provides important qualitative and quantitative infor-

mation on the effect of different volatility dynamics on the optimal

switching decision.

1 The assumption of risk-neutrality is not crucial for the solution and it is made

only for simplicity. The extension to a risk-averse process/project owner is straight-

forward and we make it available upon request from the authors. Equally non-crucial

is the assumption of instantaneous transition from one mode of operation to the other.

Switches between modes that take time to implement could be easily be accommo-

dated, only at the cost of extra notation.

Our generic model for the underlying P of the project belongs to a

general class of latent-factor stochastic volatility models and is given

by the Itô process

dPt = μPt dt + f (Yt )Pt dW1,t , P0 = p (1)

dYt = δ−2(m − Yt )dt + ν
√

2

δ
(ρdW1,t +

√
1 − ρ2dW2,t ), Y0 = y,

(2)

where Yt is a latent stochastic factor that drives the volatility through

a general feedback term described by a smooth function f : I ⊂ R →
R, (I compact). It is important to note that f need not be specified at

this point. In the above, (W1, t, W2, t)
′ is a standard, two-dimensional

Wiener process on a complete filtered probability space satisfying the

usual conditions (Karatzas & Shreve, 1991), with |ρ| < 1 a constant

correlation coefficient.

The small parameter δ plays an important role in our analysis and

models the fact that the latent factor Y follows a mean-reverting pro-

cess, whose dynamics are on a “faster” time scale than the dynamics

of P. Note that the introduction of the latent factor Y and of the differ-

ent time scales make the dynamics of P more realistic, (as suggested

by the empirical evidence in Alizadeh et al., 2002; Fouque, Papan-

icolaou, Sircar, and Sølna, 2003b; Hillebrand et al., 2006; Hikspoor

and Jaimungal, 2008, among others), but at the cost of not being able

to obtain, unless f is very specific, a closed-form solution for P. Fur-

thermore, the difference in the time scales creates problems in the

numerical resolution of (1) and (2), which is of the form of a stiff

stochastic differential equation.

The decisions to switch from one mode of operation to the other

can be modeled by an adapted, finite variation, càglàd process Q tak-

ing values in {0, 1}, with Qt = 0 or 1 if at time t, the process is idle or

active, respectively. Let q denote the mode of operation at t = 0.

Let K0, K1 denote the fixed costs of leaving the idle or the active

mode respectively. For any switching decision rule Q = {Qt}t≥0 and

initial state (q, p, y), the present value of the project is

J(q,p,y)(Q ) = E

[∫ ∞

0

e−rs[R1(Ps)Qs + R0(Ps)(1 − Qs)]ds

−
∑
s≥0

e−rs
[
K0(�Qs)

+ + K1(�Qs)
−]]

, (3)

where r is the (constant) risk-free rate of interest and by (x)±

we denote the positive/negative part of x. The flow functions Rq

are assumed to be concave and of the form Rq(p) = aq p + bq +
Rq(p) where functions Rq satisfy the condition limp→0

R0(p)
p =

limp→+∞
R1(p)

p = 0.

The objective is to maximize (3) over all possible switching rules

Q and obtain the value function,

V δ
q (p, y) := sup

Q

J(q,p,y)(Q ), (4)

where the superscript δ is used to emphasize the dependence of the

value function on the small parameter δ.

The above general model provides a convenient and flexible

framework for the treatment of a wide class of switching problems

encountered in the operations research and management science lit-

erature. Just to provide a few indicative examples, in the context of

supply-chain contracts, several papers (e.g. Wagner & Friedl, 2007;

Löffler, Pfeiffer, & Schneider, 2012) analyze supplier-switching op-

tions, that allow firms to switch suppliers and/or flexibly adjust their

order quantity over time in the face of uncertainty in the underly-

ing state process (e.g. the exchange rate in Kamrad & Siddique, 2004).

In manufacturing (Kazaz, Dada, & Moskowitz, 2005; Kogut & Kulati-

laka, 1994), as well as in service processes (Ellram, Tate, & Billington,

2008), optimal switching between in-sourcing and out-sourcing for
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