
Discrete Optimization

Solving multiobjective, multiconstraint knapsack problems using mathematical
programming and evolutionary algorithms

Kostas Florios, George Mavrotas *, Danae Diakoulaki
Laboratory of Industrial and Energy Economics, National Technical University of Athens, Zographou Campus, 15780 Athens, Greece

a r t i c l e i n f o

Article history:
Received 7 November 2007
Accepted 26 June 2009
Available online 1 July 2009

Keywords:
Branch and bound
Knapsack problem
Multiobjective
Evolutionary algorithms

a b s t r a c t

In this paper, we solve instances of the multiobjective multiconstraint (or multidimensional) knapsack
problem (MOMCKP) from the literature, with three objective functions and three constraints. We use
exact as well as approximate algorithms. The exact algorithm is a properly modified version of the mul-
ticriteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three
branching heuristics and a more general purpose composite branching and construction heuristic are
devised. Comparison is made to the published results from another exact algorithm, the adaptive e-con-
straint method [Laumanns, M., Thiele, L., Zitzler, E., 2006. An efficient, adaptive parameter variation
scheme for Metaheuristics based on the epsilon-constraint method. European Journal of Operational
Research 169, 932–942], using the same data sets. Furthermore, the same problems are solved using
standard multiobjective evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results
from the exact case show that the branching heuristics greatly improve the performance of the MCBB
algorithm, which becomes faster than the adaptive e -constraint. Regarding the performance of the MOEA
algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation of the Par-
eto front, as measured by the coverage metric (especially for the largest instance).

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The knapsack problem is a widely-studied combinatorial opti-
mization problem that has applications in many fields (Martello
and Toth, 1990). Mathematical Programming, Dynamic Program-
ming and Metaheuristics are the most common tools for solving
such problems. In the last decade, the multicriteria formulation
of the knapsack problem (multiobjective knapsack problem,
MOKP) and the construction of the corresponding Pareto front have
attracted significant attention from the Operational Research and
the Computational Science community. In the present paper we
will deal with the most complicated case where multiple con-
straints are present, giving rise to the multiobjective multicon-
straint knapsack problems – MOMCKP (Jaszkiewicz, 2004;
Erlebach et al., 2002; Zitzler and Thiele, 1999; Klamroth and Wie-
cek, 2000). In the previous definition, the term ‘‘multiconstraint”
may also be found as ‘‘multidimensional”. Specifically, we are
interested in solving:

max Px st Wx � c;

x ¼ ðx1; :::; xnÞT 2 f0;1gn
;

P 2 Rk�n; W 2 Rm�n; c ¼ ðc1; :::; cmÞT 2 Rm:

ð1Þ

A solution x0 is Pareto optimal (nondominated, efficient) if and only
if it is feasible and there is no other feasible x such that pix P pix0 for
i = 1,2, . . .,k with at least one strict inequality. The set of the Pareto
optimal solutions is coined as the Pareto set (in the decision variable
space). In the case of MOMCKP it is actually the set of the nondom-
inated binary vectors x whose corresponding images Px into Rk com-
prise the Pareto front(in the criteria space). Multiple constraints and
multiple objectives are degenerated to the conventional knapsack
problem if the W and P matrices are simply n dimensional line-vec-
tors, namely, if m = 1 and k = 1, accordingly. In this paper, we deal
with the case where k = 3, m = 3 and n is varying from 10 to 50
according to the data sets available in the literature (Laumanns
et al., 2005, 2006).

We solve the problem exactly as well as approximately.
Although the approximate solution of multiobjective combinato-
rial problems using metaheuristics is the main trend nowadays,
the usefulness of exact algorithms is also undoubted. One of the
basic reasons is the necessity for benchmarks for the approximate
algorithms. The quality of the Pareto front approximation cannot
be evaluated properly if the Pareto front is not exhaustively
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computed. The generation of the complete Pareto front cannot be
done without the use of exact algorithms.

In this work we suggest that the multicriteria branch and bound
(MCBB) algorithm (Mavrotas and Diakoulaki, 1998, 2005) which
was initially developed for mixed integer Multiobjective Linear
Programming (MIMOLP) problems can be properly applied to solve
multiobjective combinatorial optimization (MOCO) problems and
specifically MOMCKP problems. For this purpose, we devise three
branching heuristics and one composite branching and construc-
tion heuristic that are integrated in MCBB and essentially acceler-
ate it. We compare our results to the published results that we
found in the literature, specifically, the results of the adaptive e-
constraint method (Laumanns et al., 2005, 2006).

Moreover, we apply two well known multiobjective evolution-
ary algorithms (MOEA), namely NSGAII and SPEA2, on the same in-
stances of the MOMCKP problems. The purpose is to examine the
behaviour of mathematical programming methods along with
standard metaheuristics that provide approximate solutions. Plots
of the fronts are made and the coverage metric is computed for the
approximate fronts, while a comparison between the performances
of the two MOEA is performed.

The rest of the paper is organized as follows. Section 2 reviews
the related literature while Section 3 presents the heuristics which
were developed to accelerate the MCBB algorithm for the MOMCKP
problem. Section 4 briefly discusses the evolutionary techniques.
Section 5 presents the datasets and discusses the results along with
the plots and the coverage metric statistics of computed fronts. Fi-
nally, Section 6 draws the main conclusions.

2. Related literature

The case of MOKP is well studied in the literature and various
algorithms have been proposed. Basically, there are two variants
of the MOKP, namely MOMCKP and multiobjective single-con-
straint knapsack problem (MOSCKP). Both variants of the MOKP,
either with many constraints or with a single constraint, are tradi-
tional benchmarks within MOCO. Although our work focuses on
MOMCKP, we review the literature of MOSCKP, for the complete-
ness of the presentation. It must be noted that the great majority
of the papers in the next paragraph refer to the bi-criteria case.

Regarding MOSCKP, which has attracted more attention in the
Operational Research community, Gandibleux and Freville (2000)
used a two-phases branch and bound method (Visée et al., 1998)
as well as a bi-objective tabu search in order to solve bi-objective
knapsack instances with one constraint. Teghem et al. (2000) have
proposed an interactive multiobjective simulated annealing proce-
dure for MOSCKP (with four objectives and one constraint). Klam-
roth and Wiecek (2000) discuss dynamic programming approaches
for the MOSCKP and extend their analysis to MOMCKP through
didactic examples (not providing simulations). Captivo et al.
(2003) have introduced a reformulation of MOSCKP to a multicrite-
ria shortest path problem over large networks, solving the result-
ing problem by a novel labeling algorithm. They provide only bi-
objective results, due to the large acyclic networks inherent in
the reformulation, that require significant computer memory. Also,
single-constraint multiobjective (actually bi-objective) knapsack
problems are addressed by the authors. Bazgan et al. (2009a,b)
implement a dynamic programming algorithm based on domi-
nance relations and item order for the exact solution of MOSCKP
and present experimental results of improved performance com-
pared to the methods of Captivo et al. (2003) and an Integer Pro-
gramming based conventional epsilon-constraint method. The
authors focus exclusively on the MOSCKP solving instances of up
to 4000 items for the bi-objective case and up to 110 items for
the three-objective case.

Zhang and Ong (2004) used an LP-based heuristic for generating
approximations of the Pareto set in large MOSCKP instances. Scat-
ter search is also used for large instances of MOSCKP providing
approximations of the Pareto set (Gomes da Silva et al., 2006,
2007a). Lately, the same authors also used the core concept (that
is widely used in single objective knapsack problems) in bi-criteria
knapsack problems (Gomes da Silva et al., 2007b).

MOMCKP has attracted more attention in the Evolutionary
Computation community. An early influential work is (Zitzler,
1999; Zitzler and Thiele, 1999), in which they provide approxima-
tions of the Pareto front for two, three and four criteria instances of
the MOMCKP with 250 up to 750 items using the SPEA algorithm
(the number of constraints was equal to the number of objectives).
Jaszkiewicz (2002) evaluated the multiobjective genetic local
search algorithm (MOGLS) in large instances of the MOMCKP. Com-
parison involved three other MOEA and a proposed MOGLS by the
author. Objectives and constraints were 2–4 and items 250–750.
The population size was 150–350 and the size of the temporary
elite population used by MOGLS was 20, while the number of gen-
erations was 500. Jaszkiewicz (2004) performed a computational
experiment involving 16 datasets and three MOEA (SPEA, NSGA
and Pareto Memetic Algorithm, PMA) on the MOMCKP, and the
population size was restricted to either 20 or 50 individuals. Objec-
tives and constraints were 2–5 and items 100–750. Ten replica-
tions per case were made. The author admits that using larger
population sizes results in longer running times and better quality
of solutions (Jaszkiewicz, 2004, p. 426). Li et al. (2004) have pro-
posed an estimation of distribution algorithm for MOMCKP and
tested their method with datasets from Zitzler and Thiele (1999)
in comparison to MOGLS of Jaszkiewicz (2002). Kumar and Baner-
jee (2006) provide a theoretical analysis on the running time of a
novel MOEA on MOMCKP and provide some simulation results
for datasets from Zitzler and Thiele (1999). Recently, Alves and Al-
meida combined the Tchebyscheff metric within a genetic algo-
rithm in their MOTGA method (2007).

The only work found in the literature that solves MOMCKP ex-
actly is Laumanns et al. (2006, 2005). This article may serve as a
benchmark for three criteria MOMCKP instances, which are solved
by the authors exactly as well as approximately. Nevertheless, the
exact generation of the entire Pareto set in three objectives and
three constraints imposes a severe bound on the number of items
which can be solved, ranging from only 10 to 50 items, while big-
ger problems with 100 items are hardly solved (solution time more
than 10 days).

Research combining MOSCKP and MOMCKP is more scarce.
Gomes da Silva et al. (2004, 2006, 2007a) have used a scatter
search method for bi-objective multidimensional knapsack prob-
lems, which were reformulated as single-dimensional knapsack
problems, through Langrangean Relaxation. The authors focused
on bi-objective problems with as many as one hundred constraints.
Erlebach et al. (2002) provided a polynomial time approximation
scheme based on linear programming for MOMCKP and a fully
polynomial time approximation scheme for MOSCKP.

Shukla and Deb (2007) present a detailed comparative study of
four representative classical Multiple Criteria Decision Making
(MCDM) generating methods to one MOEA, namely NSGAII, in sev-
eral bi- and three-objective nonlinear test functions of varying dif-
ficulty. This is one of the few works accommodating MCDM and
evolutionary algorithms in Multiobjective Optimization, though
in nonlinear unconstrained optimization. Finally, Zitzler et al.
(2004) present a tutorial in Evolutionary Multiobjective Optimiza-
tion (EMO) proposing the usage of a given Interface, named PISA, in
future computational experiments in Multiobjective Optimization.
According to the best of our knowledge, nevertheless, only one
study has used PISA to MOCO problems to date (López-Ibáñez
et al., 2006).

K. Florios et al. / European Journal of Operational Research 203 (2010) 14–21 15



Download	English	Version:

https://daneshyari.com/en/article/480656

Download	Persian	Version:

https://daneshyari.com/article/480656

Daneshyari.com

https://daneshyari.com/en/article/480656
https://daneshyari.com/article/480656
https://daneshyari.com/

