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a b s t r a c t

Retailers often conduct non-overlapping sequential online auctions as a revenue generation and inven-
tory clearing tool. We build a stochastic dynamic programming model for the seller’s lot-size decision
problem in these auctions. The model incorporates a random number of participating bidders in each auc-
tion, allows for any bid distribution, and is not restricted to any specific price-determination mechanism.
Using stochastic monotonicity/stochastic concavity and supermodularity arguments, we present a com-
plete structural characterization of optimal lot-sizing policies under a second order condition on the sin-
gle-auction expected revenue function. We show that a monotone staircase with unit jumps policy is
optimal and provide a simple inequality to determine the locations of these staircase jumps. Our analyt-
ical examples demonstrate that the second order condition is met in common online auction mecha-
nisms. We also present numerical experiments and sensitivity analyses using real online auction data.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Online auctions of retail goods have become a significant com-
ponent of modern internet commerce. Several large retailers such
as Dell (www.dellauction.com) and Sam’s Club (auctions.sams-
club.com) increasingly use online auctions as a revenue generation
mechanism (Bapna et al., 2008, 2010). In combination with scrap-
ping excess inventories to firms like Overstock (www.over-
stock.com), large retailers also use online auctions as an
inventory clearing tool. The auction giant eBay (www.ebay.com)
and other similar firms such as Ubid (www.ubid.com) provide auc-
tion hosting services to retailers like IBM, Sharp and Fujitsu, and
also to individual sellers. Companies like Truition (www.tru-
ition.com) and ChannelAdvisor (www.channeladvisor.com) spe-
cialize in helping businesses conduct online auctions (Odegaard
and Puterman, 2006). Based on empirical data available in Vakrat
and Seidmann (2000) and Pinker et al. (2010) have noted that most
retail auction websites conduct a sequence of multi-unit auctions
of identical items. These auctions were also observed to be the
operational norm by Bapna et al. (2008), Pinker et al. (2003) and
Tripathi et al. (2009). Pinker et al. (2003) have summarized various
research issues in such auctions.

Lot-sizes, that is, the number of units to be auctioned in each
auction, are one of the key decision variables in sequential auctions

(Pinker et al., 2003, 2010; Segev et al., 2001; Tripathi et al., 2009;
Vakrat and Seidmann, 2000). A small lot-size induces bidder com-
petition thus increasing the clearing-price. The total revenue may
still be lower than one would hope because the number of units
sold is small. Uncertainty in the number of participating bidders
(demand) in each auction and that in their bids increases decision
complexity. For instance, an auction with too large a lot-size may
fail due to insufficient demand. Inventory holding costs and the
possibility of scrapping inventory to save and recover some of
these costs introduce additional economic tradeoffs.

Two papers have investigated inventory scrapping and/or lot-
sizing decisions in sequential online retail auctions (Pinker et al.,
2010; Tripathi et al., 2009).

Pinker et al. (2010) studied these problems under the following
restrictions: a fixed number of participating bidders in each auc-
tion, uniform bid distributions with support [0,1], and a truth
revealing multi-unit Vickrey mechanism. These assumptions
enabled them to formulate a deterministic dynamic program,
wherein a closed-form lot-sizing policy was derived by equating
derivatives of value functions to zero within a backward induction
procedure. The optimal lot-size decreased at a constant rate from
one auction to the next. This rate increased with inventory holding
costs and decreased with the number of bidders per auction. In
their model, it was optimal to scrap inventory only one time before
beginning the entire sequence of auctions.

Tripathi et al. (2009) also assumed a fixed number of participat-
ing bidders in each auction, and employed a multi-unit Dutch
mechanism. Using uniform bid distributions, they first optimized
the lot-size over a sequence of auctions assuming that the lot-size
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did not change over time. This led to a simple closed-form lot-size
expression that resembled the well-known Economic Order
Quantity (EOQ) formula in inventory management (Heyman and
Sobel, 2003). They also devised a goal programming method to
estimate bid distributions from online bid data.

Segev et al. (2001) focused on predicting auction clearing-prices
using an orbit queue Markov chain model, and compared these
predictions with data obtained from Onsale (www.onsale.com), a
Sillicon Valley start-up company. They proposed a deterministic
dynamic programming model for lot-size optimization under the
restrictive assumption that all items on sale will be sold owing
to a sufficiently large number of participating bidders but did not
attempt to solve it.

Odegaard and Puterman (2006) considered an auctioneer with
two identical items on hand, and determined an optimal time-
point at which the second item should be ‘‘released’’ for an auction.
They derived conditions to ensure an optimal control-limit release-
time policy. This control-limit was decreasing in holding cost.

Vulcano et al. (2002) studied a problem motivated by airline
ticket selling websites like Priceline (www.priceline.com). The sell-
er first observed bids from potential travelers, and then chose how
many and which bids to accept, as opposed to publicly pre-com-
mitting lot-sizes at the beginning of each auction before receiving
bids as practiced in retail auctions (Odegaard and Puterman, 2006;
Pinker et al., 2010; Segev et al., 2001; Tripathi et al., 2009). Conse-
quently, they solved a variable supply allocation problem rather
than a lot-size optimization problem to obtain a structural result
similar to ours but utilized different mathematical analysis and
sufficient conditions as developed by Myerson (1981) and Maskin
and Riley (2000). This work was later extended to an infinite-hori-
zon joint auctioning and pricing problem under holding and order-
ing costs (van Ryzin and Vulcano, 2004).

The basic setting in our paper is similar to Pinker et al. (2010)
and Tripathi et al. (2009) in that we consider a seller who conducts
a sequence of non-overlapping online auctions of retail goods.
However, in contrast to their work, we incorporate uncertainty in
the number of participating bidders (stochastic demand) in each
auction; do not restrict our formulation to any specific clearing-
price determination rule; and allow for any bid distribution (see
Section 2 for details). To the best of our knowledge, this is the first
paper that successfully overcomes all mathematical difficulties
introduced by this generalization in the retail pre-committing set-
ting to provide a complete structural characterization of optimal
inventory scrapping and lot-sizing policies as in Theorem 2.1.

More specifically, under the second order condition (7) on the
single-auction expected revenue function, we show that a thresh-
old inventory-scrapping policy, and a monotone staircase with unit
jumps lot-sizing policy are optimal. This condition roughly re-
quires that the marginal single-auction expected revenue, normal-
ized by the probability of sufficient number of bidders
participating, be decreasing in lot-size. It is then optimal to scrap
all inventory above a time-dependent threshold inventory level,
and not to scrap any inventory below the threshold. This threshold
equals the inventory level at which the scrap-value of a unit ex-
ceeds its marginal value over all remaining auctions. Moreover, if
lot-size x is optimal in post-scrapping inventory i, then either lot-
size x or lot-size x + 1 is optimal in post-scrapping inventory i + 1.
This unit jump in optimal lot-size occurs when the normalized
marginal single-auction expected revenue exceeds the discounted
marginal value of saving the additional unit for future auctions. See
Theorem 2.1 and its proof in Section 3 for precise detailed versions
of these statements. Section 3.1 includes several examples where
our second order condition is met. Numerical results and sensitiv-
ity analyses conducted using real online auction data are presented
in Section 4. Limitations and potential extensions of our model are
discussed in Section 5.

2. Problem description and mathematical formulation

Consider a seller with some initial inventory of identical units on
hand. We assume that the seller conducts a sequence of 1 6 T <1
auctions indexed by t = 1,2, . . . ,T. The seller uses a fixed auction
mechanism in all auctions and this mechanism is disclosed to the
bidders. Examples of auction mechanisms include multi-unit Vick-
rey as on eBay, multi-unit Dutch as on Sam’s Club, and Yankee as on
Ubid.

Under stochastic demand, one-shot scrapping as in Pinker
et al. (2010) may not be optimal; in fact, it may lead to negative
marginal values. It is essential to dynamically exploit the flexibil-
ity to scrap inventory even if the scrap-value is zero. Thus, at the
beginning of auction t, the seller makes two decisions after
observing inventory i on hand: (i) the number of units y to be
scrapped for a value of s P 0 per unit, and (ii) of the i � y remain-
ing units, the lot-size x to be put up for the tth auction. This
lot-size is disclosed to the potential bidders at the start of the
tth auction.

A random number N of bidders who wish to buy one unit each
then place their bids. The probability mass function (pmf) of N is
denoted g(�), its support is denoted N # Nþ, and its distribution
function is denoted G(�). Consistent with the existing literature,
we assume that bidders are independent across auctions, and iden-
tical both within an auction and across auctions. A detailed discus-
sion of practical limitations introduced by this assumption is
included, for instance, in Section 4 of Pinker et al. (2010), and we
do not repeat it here (also see Section 5). More specifically, the final
bids in all auctions are independent and identical (iid) random
variables B with distribution F(�), finite expectation, and support
B# Rþ whose smallest element is denoted L. The existence of a
probability density function for B is not assumed, and in particular,
B may be discrete. We remark that our setting is flexible and gen-
eral enough to allow bid distributions that are statistically esti-
mated using online data, those derived from game theoretic
analyses of how bidders might behave in sequential online mul-
ti-unit auctions, and the ones obtained through a combination of
these two approaches (see Bapna et al., 2002, 2003, 2008; Fatima,
2008; Jiang and Leyton-Brown, 2007; Pinker et al., 2010; Tripathi
et al., 2009 for examples of such techniques).

If the actual number of bidders n in an auction is more than the
lot-size x, the seller generates revenue through bidder competition
by selling all x units. We denote this revenue by p(x;n), and it is
derived from the expected value of a mechanism-specific order-
statistic of F(�). See the beginning of Section 3.1, and in particular,
Eqs. (17)–(19) for specific examples of p(x;n). If n 6 x, the auction
fails due to a lack of bidder competition. Note that this scenario
does not arise in Pinker et al. (2010) and Tripathi et al. (2009) ow-
ing to their assumption of deterministic demand. When an auction
fails, the seller sells one unit to each of the n bidders for amount L
(Pinker et al., 2003). Equivalently, in the language of Pinker et al.
(2003), the ‘‘minimum bid’’ of the auction is set to L. This is better
than selling for any price less than L. The seller may however ben-
efit from using a minimum bid requirement of some K > L, and
then selling each unit in a failed auction for K. This introduces
challenging tradeoffs, which require dynamic optimization of K
and are not the focus of this paper (also see Section 5). Another en-
tirely different possibility for the seller is to cancel a failed auction,
returning the x units originally intended for sale back to the inven-
tory held. Canceling auctions disappoints bidders who did partici-
pate, leading to negative feedback from these unsatisfied bidders.
This hurts the seller’s reputation that is critical for success in e-
commerce (Ba and Pavlou, 2002; Resnick et al., 2006). We there-
fore do not follow this alternative approach.

The holding cost of carrying each unit in inventory during auc-
tion t is denoted h P 0, and it is assumed to be incurred for the
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