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a b s t r a c t

While our society began to recognize the importance to balance the risk performance under different risk

measures, the existing literature has confined its research work only under a static mean-risk framework.

This paper represents the first attempt to incorporate multiple risk measures into dynamic portfolio selec-

tion. More specifically, we investigate the dynamic mean-variance-CVaR (Conditional value at Risk) formu-

lation and the dynamic mean-variance-SFP (Safety-First Principle) formulation in a continuous-time setting,

and derive the analytical solutions for both problems. Combining a downside risk measure with the variance

(the second order central moment) in a dynamic mean-risk portfolio selection model helps investors control

both a symmetric central risk measure and an asymmetric catastrophic downside risk. We find that the op-

timal portfolio policy derived from our mean-multiple risk portfolio optimization models exhibits a feature

of curved V-shape. Our numerical experiments using real market data clearly demonstrate a dominance re-

lationship of our dynamic mean-multiple risk portfolio policies over the static buy-and-hold portfolio policy.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

One fundamental principle behind the mean-variance (MV) port-

folio selection formulation proposed by Markowitz (1952) is to strike

a balance between maximizing the expected terminal wealth and

minimizing the investment risk. Please refer to Kolm, Tütüncü, and

Fabozzi (2014) for a review of the research progress in portfolio op-

timization during the past 60 years. As a natural generalization of

the MV analysis, a general class of mean-risk portfolio optimization

models has already become a fundamental instrument in real-world

portfolio management. The last half century has witnessed numer-

ous risk measures proposed in the literature. Please see Krokhmal,

Zabarankin, and Uryasev (2011) for a comprehensive review. At the

same year when Markowitz published his seminal work of the MV

formulation, Roy (1952) proposed the fundamental safety-first prin-

ciple (SFP) in portfolio selection, which concerns the probability that
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disastrous events happen, a risk measure concentrating on the tail of

a distribution, instead of the central moments. Following the same

concept of SFP to measure the downside risk, the Value-at-Risk(VaR)

is defined as the quantile of the loss under certain confidence level.

Although VaR is popular in financial industry (RiskMetricTM Morgen,

1996), the VaR has been widely criticized for some of its undesired

properties (Tasche, 2002). More specifically, VaR fails to qualify as

a coherent risk measure, as it violates some axioms of the coher-

ent risk measures proposed by Artzner, Delbaen, Eber, and Heath

(1999). As a modification of the VaR, the conditional Value-at-Risk

(CVaR) proposed by Rockafellar and Uryasev (2000) and Rockafellar

and Uryasey (2002) is defined as the average value of the loss greater

than the VaR for a given confidence level. CVaR has attracted in-

creasing attention in recent years as CVaR is a coherent risk mea-

sure proved by Acerbi and Tasche (2002). More importantly, the

convexity of the CVaR measure leads to a tractable optimization

model of the corresponding mean-CVaR portfolio formulation and

its extensions, see, e.g., Alexander and Baptista (2002), Rockafellar

and Uryasey (2002), Zhu and Fukushima (2009) and Huang, Zhu,

Fabozzi, and Fukushima (2010). While almost all mean-risk frame-

works in the literature adhere to a single risk measure, Roman,

Darby-Dowman, and Mitra (2007) proposed recently a static portfo-

lio selection model with a combined risk measure of both variance

and CVaR, which offers a new way of thinking under the mean-risk

framework.
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Various dynamic mean-risk portfolio optimization models have

been developed according to different risk measures. The past

15 years has witnessed rapid progresses of the dynamic MV

formulation by leaps and bounds, see Li and Ng (2000), Zhou and

Li (2000), Li, Zhou, and Lim (2001), Zhu, Li, and Wang (2004),

Bielecki, Jin, Pliska, and Zhou (2005), Basak and Chabakauri (2010),

Cui, Li, Wang, and Zhu (2012), Cui, Gao, Li, Li, (2014). The earli-

est work on dynamic mean-SFP portfolio selection model by Li,

Chan, and Ng (1998) approximates the SFP measure by using the

Bienaymé–Tchebycheff Inequality as did in the original work of

Roy (1952), which in turn leads back to a dynamic MV formula-

tion. However, when the underlying distribution of the random re-

turn is not normally distributed and is asymmetric, such an ap-

proximation method is certainly not accurate enough and basically

loses the essential feature of the safety-first principle. As for the

mean-CVaR portfolio models, the current state-of-the-art still re-

mains mainly at the level of static formulations which generate

optimal buy-and-hold portfolio policies, e.g., see Rockafellar and

Uryasev (2000), Alexander and Baptista (2002), Rockafellar and

Uryasey (2002), Zhu and Fukushima (2009), Künzi-Bay and János

(2006) and Huang et al. (2010). Different from MV portfolio opti-

mization where only the first two central moments of the distribu-

tion are needed, the distribution information of the returns is always

required in computing the CVaR of the portfolio loss. Thus, either an

explicit distribution function or a discrete distribution is assumed in

mean-CVaR portfolio optimization. The past several years have wit-

nessed efforts to extend static mean-CVaR optimization models to

two-period or multi-period settings, see, e.g., Fábián (2006), Fábián

and Szoke (2007), Hibiki (2006). However, due to the assumption of

the discrete scenario of the returns, these models often lead to a com-

putational intractability while the number of scenario and/or periods

is only relatively large. By using the dynamic programming approach,

Siegmann and Lucas (2005) studied the loss aversion based dynamic

portfolio allocation model which is related to mean-downside risk

portfolio optimization. As for continuous-time models, Jin, Yan, and

Zhou (2005) showed that a general class of mean-downside risk port-

folio optimization problem in continuous-time setting is ill-posed

in the sense that the optimal value cannot be achieved. Despite of

such a negative result, there do exist research works that integrate

the downside risk measure into the utility maximization model in

continuous-time, e.g., Basak and Shapiro (2001) considered the VaR

constraint on the terminal wealth, and Yiu (2004) extended such a

result to the case when the VaR constraint is imposed for the entire

investment process. Chiu, Wong, and Li (2012) modified the original

mean-SFP formulation reasonably by imposing an upper bound on

the terminal wealth level and completely solved the continuous-time

mean-SFP asset-liability problem.

Different risk measures emphasize different aspects of the ran-

dom investment loss. While the variance measures the deviation

of the random variable from the expected value, Roy’s safety-first

principle (SFP) (Roy, 1952) focuses on the extreme events in the tail

part of the random return distribution. While SFP is a probability

measure, the CVaR is a conditional expectation conditioned on that

losses are greater than the VaR for a given confidential level. If we

examine the investment performance according to different spectra

of the risk measures, any policy generated from a mean-risk portfolio

model with a sole risk measure may not become a good choice.

Roman et al. (2007) showed that the optimal policy generated from

the mean-CVaR portfolio model could induce a very large variance,

which leads to a small Sharpe ratio. The confidential level of the loss

in CVaR is usually set at 95 or 99 percent. Intuitively speaking, the

CVaR focuses on the 5 or 1 percent tail part of the random return

distribution, which neglects the risk exhibited in other parts of the

distribution. On the other hand, the CVaR of the portfolio generating

from the traditional MV model could be also unacceptably large. To

overcome the inconsistence between the policies generated from the

MV and mean-downside risk models, Roman et al. (2007) proposed

to combine the CVaR and the variance together as two risk measures

in a multi-objective portfolio optimization problem. After solving

these static optimization problems, Roman et al. (2007) showed the

advantage of these portfolio models with multiple risk measures by

checking them against various market data sets.

Motivated by the work in Roman et al. (2007) under a static set-

ting, we consider in this paper its extension to dynamic portfolio se-

lection with multiple risk measures. More specifically, we consider

in this work two kinds of dynamic mean-multiple risk portfolio opti-

mization models, namely, the dynamic mean-variance-CVaR (MVC)

and the dynamic mean-variance-SFP (MVS) portfolio optimization

problems. To our knowledge, this is the first work in the literature

studying dynamic mean-multiple risk portfolio optimization models.

Compared to the existing literature, our contributions include several

significant features. Under our market setting, we are able to derive

the analytical forms of the portfolio policy for both MVC and MVS

portfolio optimization models. Due to the combined risks in the ob-

jective function, our multiple-risks based portfolio model conquers

the ill-posedness of the mean-downside risk portfolio optimization

model with a sole downside risk (Jin et al., 2005). We also reveal a

key difference of our portfolio model with the well known dynamic

MV portfolio policy, e.g., see Li and Ng (2000), Zhou and Li (2000),

Bielecki et al. (2005). The optimal portfolio policies derived from both

MVC and MVS exhibit a curved V-shape property, i.e., with respect to

a certain level of the current wealth, both of the MVC and MVS port-

folio policies increase the allocation to the risky assets in both direc-

tions. Compared with the static MVC model proposed by Roman et al.

(2007), our newly derived dynamic MVC portfolio policy can reduce

both the variance and the CVaR measures significantly.

The remaining of this paper is organized as follows. We present

the market setting and problem formulations in Section 2. We in-

vestigate and solve completely the dynamic MVC and dynamic MVS

formulations in Section 3 and Section 4, respectively. In Section 5,

we compare the dynamic MVC and MVS portfolio policies with the

dynamic MV portfolio policy via two illustrative examples. We also

compare our dynamic MVC portfolio model with the static buy-and-

hold portfolio policy. Throughout of the paper, we use notation 1A

for the indicator function, i.e., 1A = 1 if condition A holds and 1A = 0

otherwise, Q′ for the transpose of matrix Q, and (y)+ for the non-

negative part of y, i.e., (y)+ � max{0, y}. We denote normal random

variable X with mean a and variance b by X ∼ N (a, b), and denote the

probability density function and the cumulative distribution function

(CDF) of the standard normal variable by φ(·) and �(·), respectively.

For any particular optimization problem (P), we use v(P) to denote

its optimal objective value.

2. Market setting and problem formulation

We consider a market with n risk assets and one risk free as-

set which can be traded continuously within a time horizon [0, T].

An investor enters the market with initial wealth x0 and allocates

his wealth in these n + 1 assets continuously. The price process

S0(t) of the risk free asset follows the ordinary differential equa-

tion, dS0(t) = r(t)S0(t)dt, t ∈ [0, T], with S0(0) = s0, where r(t) is

the risk free return, 0 ≤ t ≤ T. In this work, all the randomness is

modeled by a complete filtrated probability space {�,F , P, {Ft}t≥0},
on which an Ft adapted n-dimensional Brownian motion W(t) =(
W 1(t), . . . ,W n(t)

)′
is defined, where Wi(t) and Wj(t) are mutually

independent for i �= j. The price processes of the n risky assets satisfy

the following set of stochastic differential equations (SDE),

dSi(t) = Si(t)

(
μi(t)dt +

n∑
j=1

σi j(t)dW j(t)

)
, i = 1, . . . , n,

with Si(0) = si, where μi(·) and σ ij(·) are the appreciation and

volatility, respectively. We assume that r(t), μi(·) and σ ij(·) are Ft -
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