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a b s t r a c t

In this paper, we investigate the asymptotic behaviors of the loss reservings computed by individual data

method and its aggregate data versions by Chain-Ladder (CL) and Bornhuetter–Ferguson (BF) algorithms. It is

shown that all deviations of the three reservings from the individual loss reserve (the projection of the out-

standing liability on the individual data) converge weakly to a zero-mean normal distribution at the
√

n rate.

The analytical forms of the asymptotic variances are derived and compared by both analytical and numerical

examples. The results show that the individual method has the smallest asymptotic variance, followed by the

BF algorithm, and the CL algorithm has the largest asymptotic variance.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Predicting future losses (outstanding liabilities) and thus the re-

serves required to cover them, referred to as loss reserving, is a cru-

cial and indispensable task of risk management in the insurance and

financial industries. It has been increasingly recognized that loss re-

servings based directly on individual data (raw data, or micro-level

data, see, e.g. Antonio and Plat, 2014) are generally more accurate

than those computed from aggregate data (macro-level data), at the

cost of higher operation/management expenditure on data collection,

storage and computations. This is because the former makes better

use of the information included in the data, whereas the latter gener-

ally aggregates data without a clear purpose in risk management and

rational justification in statistical theory. In other words, the use of

aggregate data allows a substantial reduction in operation loadings,

but sacrifices the accuracy of loss reserving. To date, however, it is un-

clear how much accuracy has been sacrificed in loss reserving using

the aggregate data versus the more informative individual data. On

the other hand, the main reason for aggregating data in old days was

the lack of facilities and the high costs to storing, transporting and re-

trieving information from the raw data, which is no longer a big issue

with the fast development of modern technology. As noted ten years

ago by England and Verrall (2002) and Taylor and Campbell (2002),
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lots of useful information about the claims data remains unused if

data are aggregated. There has been a limited literature on the efforts

to provide evidence for the advantage of loss reservings using indi-

vidual data. The examples include:

• Antonio and Plat (2014), Pigeon, Antonio, and Denuit (2013; 2014)

conducted empirical studies based on a set of common real-life

micro-level data from a European insurance company, with pa-

rameterized versions (so that the maximum likelihood procedure

can be applied to estimate the unknown parameters) of Norberg’s

Position Dependent Marked Poisson Process model (in continuous

time, cf. Norberg, 1993; 1999). It was shown that the micro-level

approaches provided closer prediction of the future liabilities for a

subset of the data that have been settled so that the liabilities are

in fact observed at the assumed reserve evaluating date (referred

to as out-of-sample prediction).
• Huang, Qiu, and Wu (2015), under a special micro-level data set

with only once payment for every claim at its settlement, proved

the almost sure convergence of their loss reserving at a rate of or-

der o(n) theoretically. They further showed that the individual loss

reserve (the projection of the outstanding liability on the individ-

ual data) outperforms the aggregate loss reserve (the projection of

the outstanding liability on the aggregate data) in mean squared

deviation from the individual loss reserves, and the individual loss

reserving outperforms (with smaller bias and variance than) such

traditional aggregate loss reservings as the Chain Ladder (CL) and

Bornhuetter–Ferguson (BF) methods via Monte Carlo simulations.

For an outstanding liability L, a broadly used criterion to compare

different loss reserving procedures is the (conditional) mean squared
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error of prediction (abbreviated as MSEP in the literature)

MSEPL|Data = E[(̂L − L)
2|Data] = Var(L|Data) + (̂L − E[L|Data])

2
,

(1.1)

where L̂ is a Data-measurable predictor/estimate (or simply referred

to as a loss reserve) of L. In Antonio and Plat (2014) and Pigeon et al.

(2013, 2014), MSEPL|Data was computed by empirical data where the

future liabilities were known from the data. Theoretically, it was es-

timated by the data (in micro- or macro-level) using for example the

bootstrap method. Examples that have been discussed are MSEP of

the CL method (Mack, 1993), Benktander model (Mack, 2000), the

BF method under generalized linear models (Alai, Merz, & Wüthrich,

2009; 2010) and MSEP of loss reservings under Log-normal/Log-

normal model, the exponential dispersion model and other stochas-

tic models (see, e.g., Wüthrich & Merz, 2008). Note that, as a func-

tion of the observed data that is free of the reserving procedures,

the term Var(L|Data) in (1.1) contributes only a constant to MSEP

and thus can be ignored in measuring the deviation of the reserving

L̂ from the outstanding liability L, so that one can just address the

term (̂L − E[L|Data])
2
, for comparing different reserving methods.

For simplicity, we refer to (̂L − E[L|Data])
2

as the mean squared error

(MSE) below. It is obvious that the estimated conditional MSE/MSEP

is also a random variable and thus, when more than one loss reserv-

ing method are in hand, does not give a clear picture of which one

would be better.

Generally, a feasible way is to use unconditional E[(̂L − E[L|
Data])2] to comprehensively measure the deviation of the loss re-

serving from the outstanding liability/loss reserve, as what have done

in Huang et al. (2015) by means of Monte Carlo simulations. As ar-

gued by Huang et al. (2015), in the situations where micro-level

data (denoted by D) are available, one should measure the deviation

(̂L − E[L|D])
2
, rather than (̂L − E[L|AD])

2
based on aggregated data,

where AD indicates some aggregated data (macro-level data) pro-

duced from the micro-level data.

The other way that can give perfect characteristics of a loss reserv-

ing L̂ is to compare the distribution of L̂ − E[L|D]. Because it is usually

impossible to obtain the exact distribution of the deviation in fixed

sample size, a usual alternative is to study its asymptotic distribu-

tion. This paper is dedicated to derive the asymptotic distributions

of loss reservings and compare different reserving procedures. More

specifically, we investigate the asymptotic behaviors of the loss re-

servings based on individual data and their CL and BF versions based

on the deduced aggregated data proposed in Huang et al. (2015). The

key contributions of this paper are highlighted as follows:

(a) We derive the asymptotically normal distributions of L̂ −
E[L|D] for individual and aggregate loss reservings L̂. While

the aggregate procedures have been used for decades, this pa-

per appears the first to derive the asymptotic distributions of

L̂ − E[L|D] under both individual and aggregate methods.

(b) Based on the asymptotic distributions, we compare the accu-

racy of the three loss reservings in terms of their asymptotic

variances. While they are all weakly convergent at a rate of

order
√

n, the numerical examples show that the asymptotic

variance is smallest with individual loss reserving and largest

with the CL loss reserving, while the BF reserving takes an in-

termediate place that is closer to the CL method.

These findings indicate the preference order of the loss reservings:

Individual loss reserving is more accurate than its BF version, and the

BF procedure is more accurate than its CL version.

The remainder of this paper is organized as follows. In Section 2,

after introducing the notations for observations and parameters con-

cerned, data structure, model assumptions and estimates of the un-

known parameters proposed in Huang et al. (2015) for later reference,

we review the three loss reserving methods: individual data method,

CL method and BF method. In Section 3, we give asymptotic distribu-

tions of the deviations of the three reservings from the individual loss

reserve E[L|D] and then make some analytical and numerical com-

parisons on their asymptotic variances. The technically complicated

proofs of the asymptotic distributions are relegated in Section 4 so as

to smooth the flow of the text. The final section concludes the paper.

2. Models and methods

2.1. Model formulation and parameter estimation

This section first reviews the data structure, distribution assump-

tions, and the parameter estimation developed in Huang et al. (2015).

Some notations are also introduced in this section.

Following Huang et al. (2015), all claims are organized in accident

years i = 0, 1, . . . , I and loss reserving is evaluated at the end of the

latest accident year. The data are structured with the following items:

(a) In every accident year i, there are ni policies so that n :=∑I
i=0 ni is the total number of policies exposed to all I + 1 acci-

dent years, where “ := ” reads “defined as”.

(b) For the kth policy of accident year i, referred to as policy (i, k),

denote by eik ∈ [0, 1] its exposure, Mik the number of its claims,

and (i, k, l) its lth claim event, l = 1, 2, . . . , Mik so that, the quan-

tities ei := ∑ni

k=1
eik and Ni := ∑ni

k=1
Mik are respectively the to-

tal exposure and number of claims occurring in accident year

i. Also denote e(r) = ∑I−r
i=0 ei, r = 0, 1, . . . , J1.

(c) For each claim event (i, k, l), there exists a maximum reporting

delay J1 and a maximum settlement delay J2 satisfying I = J =
J1 + J2, where J indicates the maximum development year, and

a claim is only paid once at the end of its claim settlement year.

Denote by Rikl its reporting delay, Tikl settlement delay and Yikl

claim amount.

Next presented are the technical assumptions regarding the joint

distribution of the data.

Assumption 2.1.

(a) The claims data
{

Mik; {Rikl , Tikl ,Yikl}∞
l=1

}
are mutually indepen-

dent over policies (i, k) for k = 1, 2, . . . , ni and i = 0, 1, . . . , I.

(b) For every policy (i, k),
• the claims number Mik ∼ Poisson(λeik), independent of

the sequence of random triplets {(Rikl , Tikl ,Yikl), l = 1, 2, . . .},
where λ is the unknown intensity of claims numbers from a

risk with unit exposure, and
• the triplets (Rikl , Tikl ,Yikl), l = 1, 2 . . . , are independent and

identically distributed (i.i.d.) as a representative (R, T, Y),

whose joint distribution is determined by the unknown pa-

rameters

pr = Pr (R = r), qrt = Pr (T = t|R = r) and(
μrt

νrt

)
= E

[(
Y

Y 2

)∣∣∣∣R = r, T = t

]
,

r = 0, 1, . . . , J1, t = 0, 1, . . . , J2.

Write λr = λpr, μ′
r = (μr0,μr1, . . . ,μrJ2

), q′
r = (qr0, qr1,

. . . , qrJ2
) and

crt = qrt∑J2
l=t

qrl

= Pr (T = t|R = r, T ≥ t), t = 0, 1, . . . , J2,

r = 0, 1, . . . , J1.

(c) The limits ni/n → κ i ∈ (0, 1) and
√

n(ei/n − ĕi) → 0 hold for every

i = 0, . . . , I as the total number of individuals n → ∞. Accordingly,

denote ĕ(r) = ∑I−r
i=0 ĕi, r = 0, 1, . . . , J1.

For any vector x, use diag(x) to indicate the diagonal matrix gen-

erated by the components of x, so that if we have two column vectors
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