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a b s t r a c t

Preference rankings virtually appear in all fields of science (political sciences, behavioral sciences, machine

learning, decision making and so on). The well-known social choice problem consists in trying to find a rea-

sonable procedure to use the aggregate preferences or rankings expressed by subjects to reach a collective

decision. This turns out to be equivalent to estimate the consensus (central) ranking from data and it is known

to be a NP-hard problem. A useful solution has been proposed by Emond and Mason in 2002 through the

Branch-and-Bound algorithm (BB) within the Kemeny and Snell axiomatic framework. As a matter of fact, BB

is a time demanding procedure when the complexity of the problem becomes untractable, i.e. a large number

of objects, with weak and partial rankings, in presence of a low degree of consensus. As an alternative, we

propose an accurate heuristic algorithm called FAST that finds at least one of the consensus ranking solutions

found by BB saving a lot of computational time. In addition, we show that the building block of FAST is an

algorithm called QUICK that finds already one of the BB solutions so that it can be fruitfully considered to

speed up even more the overall searching procedure if the number of objects is low. Simulation studies and

applications on real data allows to show the accuracy and the computational efficiency of our proposal.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The consensus ranking problem, also known as social choice prob-

lem, arises any time n subjects (or judges) are asked to express their

preferences on a set of m objects. These objects are placed in order

by each subject (where 1 represents the best and m the worst) with-

out any attempt to describe how much one differs from the others or

whether any of the alternatives is good or acceptable. Every indepen-

dent observation is a permutation of m distinct positive integer num-

bers. To be more specific, when the subject assigns the integer values

from 1 to m to all the m items we have a complete (or full) ranking.

Whenever instead the judge fails to distinguish between two or more

items and assigns to them the same integer number (expressing in-

difference to the relative order of this set of items), we deal with tied

(or weak) rankings. Moreover we have a partial ranking when judges

are asked to rank a subset of the entire set of objects (e.g. pick the

three most favorite items out of a set of five) (D’Ambrosio & Heiser,

2014; Marden, 1996). Rankings are by nature peculiar data in the
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sense that the sample space of m objects can be only visualized in a

(m − 1)-dimensional hyperplane by a discrete structure that is called

the permutation polytope, Sm. A polytope is a convex hull of a finite

set of points in R
m (Heiser, 2004; Thompson, 1993). For example the

space considering 4 objects with all possible ties is a truncated octa-

hedron that can be visualized in Fig. 1 (Heiser & D’Ambrosio, 2013).

As we already pointed out, the permutation polytope is inscribed in

a (m − 1)-dimensional subspace, hence, for m > 4, such structures

are impossible to visualize. The permutation polytope is the natural

space for ranking data. To define it no data are required, it is com-

pletely determined by the number of items involved in the preference

choice; data add only information on which rankings occur and with

what frequency they occur. This space is discrete and finite. It is char-

acterized by symmetries and it is endowed with a graphical metric.

The problem of combining rankings to obtain a ranking repre-

sentative of the group has been studied by numerous researchers

in several areas, e.g. voting systems, economics, machine learning,

psychology, political sciences, for more than two centuries. In the

framework of distance-based models for rankings, searching for

consensus ranking is a very important step in modeling the ranking

process (Marden, 1996). These models are usually exponential family

models (Diaconis, 1988) and they are completely specified by two pa-

rameters, a dispersion parameter and a consensus (central) ranking.
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Fig. 1. Permutation polytope for all full and weak ranking for four objects. For every

ranking the correspondent ordering is shown.

Maximum likelihood estimates of the dispersion parameter assume

the knowledge of the central ranking. When the consensus ranking

is not known it should be estimated. Unfortunately, even if there

are close formulas for this estimation they are not feasible because

of the complexity of the problem (Critchlow, Fligner, & Verducci,

1991; Critchlow, 1985; Diaconis, 1988; Fligner & Verducci, 1986,

1988). Several methods to aggregate individual preference rankings

have been proposed since the works of Arrow (1951) Barthelemy

and Monjardet (1981) Black (1958) Bogart (1973) Cook and Seiford

(1978) Coombs (1964) Davis, DeGroot, and Hinich (1972) de Borda

(1781) de Condorcet (1785) Emond and Mason (2002) Goodman and

Markowitz (1952) and Meila, Phadnis, Patterson, and Bilmes (2012).

In this paper, we propose two heuristic algorithms called QUICK

and FAST to derive the consensus ranking from the aggregation of in-

dividual preferences within the Kemeny and Snell axiomatic frame-

work. Both algorithms can be viewed as alternatives to the branch-

and-bound algorithm by Emond and Mason. The BB algorithm turns

out to be a time consuming procedure when the number of objects is

high and especially when the internal degree of consensus present in

the data is weak. Both QUICK and FAST algorithms can deal with com-

plete and tied rankings as well as with incomplete (or partial) rank-

ings. As a matter of fact, the QUICK algorithm is the building block

of the FAST algorithm. Both provide savings in computational time,

but the FAST algorithm is more accurate because it finds more than

one of the solutions found by the BB algorithm and it can also easily

deal with problems characterized by a large number of objects to be

ranked and weak and partial rankings and/or a low degree of internal

consensus. On the other hand, the QUICK algorithm turns out to be

really useful when the number of objects is limited because it returns

one of the solutions found by the BB, or a really close solution, in a

considerably small amount of time.

The rest of the paper is organized as follow. In Section 2 we briefly

present some of the proposed approaches to aggregate preference

rankings and derive a consensus. In Section 3 we describe the branch-

and-bound algorithm by Emond and Mason. Section 4 is devoted

to describe the proposed algorithms, then in Sections 5 and 6 we

present a simulation study and applications on real data to evalu-

ate both the accuracy and the efficiency of our proposal. Concluding

remarks are then found in Ssection 7.

2. Finding the consensus ranking, some approaches

The term consensus ranking is a generic name for any ranking that

summarizes a set of individual rankings. There exist two broad classes

Table 1

Example data to illustrate Borda’s

method of marks.

# Voters Alternatives

A B C

12 2 1 3

5 1 2 3

7 3 2 1

Table 2

Support table to illustrate Condorcet’s

method on example data

A B C

A − 5 17

B 19 − 17

C 7 7 −

of approaches to aggregate preference rankings in order to find a con-

sensus (Cook, 2006):

• ad hoc methods, which can be divided into elimination (for ex-

ample the American system method, the pairwise majority rule,

etc.) and non-elimination (for example Borda’s methods of marks

(1781), Condorcet’s method (1785), etc.);
• distance-based models, according to which it is necessary to define

a distance of the desired consensus from the individual rankings.

A more detailed description of both these approaches can be

found in Cook (2006).

How to aggregate subjects preferences to create a consensus is a

problem that goes back to 1781 when Borda formulated the method

of marks (also known as Borda’s count) for determining the winner in

elections with more than 2 candidates. This method is quite simple

and it is based on calculating the total rank for each alternative. For

example, if we consider the rankings in Table 1 the total rank for each

alternative is given by:

• A = 12 × 2 + 5 × 1 + 7 × 3 = 50,

• B = 12 × 1 + 5 × 2 + 7 × 2 = 36,

• C = 12 × 3 + 5 × 3 + 7 × 1 = 58,

resulting in the consensus (BAC). Borda’s method of marks was crit-

icized by Condorcet, which proposed to use the majority rule on all

the pairwise comparisons between alternatives. Condorcet’s solution

for the rankings reported in Table 1 can be obtained by calculating the

support obtained by every pairwise comparison between options, re-

ported in Table 2. From Table 2 we can deduce that B�A, B�C and

A�C, resulting also in the consensus ranking (BAC). In applying this

method, unfortunately, one problem can be encountered, i.e. if in-

transitive preferences occur the simple majority procedure breaks

down (paradox of voting (Arrow, 1951), according to which a set of

transitive preferences can generate a global intransitive preference as

group preference).

In the last century the rank aggregation problem has been ap-

proached from a statistical perspective. Kendall (1938) was the first

to propose a method to aggregate input rankings to find a consensus.

He studied the consensus problem as a problem of estimation and he

proposed to rank items according to the mean of the ranks assigned,

thus proposing a method equivalent to Borda’s one. Moreover he sug-

gested to consider the Spearman rank correlation coefficient ρ , that,

given two preference rankings R and R∗, is defined as:

ρ = 1 − 6
∑n

i=1 d2
i

n3 − n
, (1)

where d2
i
(R, R∗) = ∑m

j=1 (R j − R∗
j
)2 is the squared difference between

rankings R and R∗ (Kendall, 1948, page 8). The Spearman’s ρ is equiva-

lent to the product moment correlation coefficient and it treats rank-

ings as they are scores summing the square of ranked differences.
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