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a b s t r a c t

A genetic algorithm (GA) with varying population size is developed where crossover probability is a func-
tion of parents’ age-type (young, middle-aged, old, etc.) and is obtained using a fuzzy rule base and pos-
sibility theory. It is an improved GA where a subset of better children is included with the parent
population for next generation and size of this subset is a percentage of the size of its parent set. This
GA is used to make managerial decision for an inventory model of a newly launched product. It is
assumed that lifetime of the product is finite and imprecise (fuzzy) in nature. Here wholesaler/producer
offers a delay period of payment to its retailers to capture the market. Due to this facility retailer also
offers a fixed credit-period to its customers for some cycles to boost the demand. During these cycles
demand of the item increases with time at a decreasing rate depending upon the duration of customers’
credit-period. Models are formulated for both the crisp and fuzzy inventory parameters to maximize the
present value of total possible profit from the whole planning horizon under inflation and time value of
money. Fuzzy models are transferred to deterministic ones following possibility/necessity measure on
fuzzy goal and necessity measure on imprecise constraints. Finally optimal decision is made using above
mentioned GA. Performance of the proposed GA on the model with respect to some other GAs are
compared.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

GAs are general purpose search techniques, which use princi-
ples of natural evolution (Holland, 1975). Their domain of utiliza-
tion is very large, a review of their implementations and some
domains of applications are given in Goldberg (1989), and
Michalewicz (1992). But behavior and performance of a GA are
directly affected by the interaction between the parameters, which
have fixed crisp values in a simple GA (Last and Eyal, 2005;
Michalewicz, 1992). Poor parameter settings usually lead to
several problems such as premature convergence. Extensive
research work has been made to improve the performance of GA
for single/multi-objective continuous/discrete optimization prob-
lems during last two decades (Bessaou and Siarry, 2001; Chang
et al., 2005; Last and Eyal, 2005; Pezzellaa et al., 2008). According
to literature, GAs with varying population size do better perfor-
mance for search problems in various domains. Last and Eyal
(2005) developed a GA with varying population size, where each
chromosome is assigned a lifetime at the time of birth depending
on fitness. They classified the chromosomes into three age types
– young, middle-aged and old according to their age and represent

them using fuzzy numbers. In their GA, crossover probability is a
function of parents’ age-type and is obtained using a fuzzy rule
base. One difficulty in implementing this GA in the computer is
that population size monotonically increases in each generation,
which in turn gives memory fault in running the program after
some iterations. Another drawback is that before using the fuzzy
parameters in the algorithm they transform these into crisp num-
bers using center of gravity of fuzzy numbers. So impreciseness of
genetic parameters are not properly incorporated in the algorithm.

Overcoming the above drawbacks, here, a GA with varying pop-
ulation size is developed where population size has an upper limit.
Chromosomes are classified into young, middle-aged and old
according to their age and are represented by fuzzy numbers. Here
also crossover probability is a function of parents’ age-type, but is
obtained using a fuzzy rule base and fuzzy possibility theory Du-
bois and Prade (1980). It is an improved GA, where a subset of bet-
ter children is included in the parent population for the next
generation and the maximum size of this subset is a percentage
of the size of its parent population.

GAs are extensively used for inventory control decisions during
last decade. Maiti and Maiti (2007) developed a two-storage inven-
tory model with lot-size dependent fuzzy lead-time under possibil-
ity constraints via genetic algorithm. Najafi et al. (2009) developed
a parameter-tuned genetic algorithm for the resource investment
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problem with discounted cash flows and generalized precedence
relations. Maiti et al. (2006) developed a two storage inventory
model with fuzzy deterioration over a random planning horizon
and solved using GA. Sourirajan et al. (2009) developed a genetic
algorithm for a single product network design model with lead
time and safety stock considerations. Maiti (2008) developed a fuz-
zy inventory model with two warehouses under possibility mea-
sure on fuzzy goal. Valente and Gonalves (2009) follow genetic
algorithm approach for the single machine scheduling problem
with linear earliness and quadratic tardiness penalties. Wee et al.
(2009) developed a multi-objective joint replenishment inventory
model of deteriorated items in a fuzzy environment. Taleizadeh
et al. (2009) used a hybrid method of Pareto, TOPSIS and genetic
algorithm to optimize multi-product multi-constraint inventory
control systems with random fuzzy replenishment. Xu and Zhao
(2010) used genetic algorithm to solve a multi-objective inventory
problem with fuzzy rough coefficients.

Inventory models with permissible delay in payment have been
extensively studied by several authors (Chang et al., 2001; Chung,
1998a,b; Goyal, 1985; Huang, 2003; Jamal et al., 2000). In these
studies it is usually assumed that the supplier would offer a fixed
credit-period to the retailer but the retailer in turn would not offer
any credit-period to its customers, which is unrealistic, because in
real practice retailer might offer a credit-period to its customers in
order to stimulate his own demand. Inventory model incorporating
this phenomenon was first developed by Huang (2007). He devel-
oped an EPQ model under two levels of trade credit policy, where
the retailers’ trade credit-period offered by the supplier, M, is not
shorter than the customers’ trade credit-period offered by the re-
tailer, T0 (M P T0). A major drawback of the model is that here
credit-period of customer is not same for all the customers. The
persons who purchase the item earlier will get more credit-period
than those purchase later. Moreover, in the model, retailers’ credit-
period has no effect on the demand of the item. Incorporating these
shortcomings Jaggi et al. (2008) developed an inventory model
under two-level trade credit policy where demand of the item
depends on retailers’ credit-period (T0). They assumed that cred-
it-period (T0) of each customer is same and is offered during the
entire planning horizon. But in reality it is normally observed that
though supplier offers the credit-period to retailers during the
whole planning horizon, retailer offers the credit-period to its cus-
tomers during few cycles at the beginning of planning horizon to
boost the demand. When demand of the item reaches a certain le-
vel, the credit-period is withdrawn by the retailer.

Again inventory models are normally developed with common
assumption that lifetime of the product is infinite. Due to fluctuat-
ing world economy, cost of the raw materials as well as processing
cost of an item changes rapidly. Also ‘introduction of multination-
als’ leads to change in product specifications with new features,
packets and name. So in reality, lifetime of a product is finite and
normally it is imprecise in nature. Few research papers have
already been published incorporating this assumption (Gurnani,
1983; Moon and Yun, 1993; Maiti et al., 2006; Roy et al., 2007).

In this research paper an inventory model of an item is devel-
oped, where lifetime of the product is assumed as fuzzy in nature
and so planning horizon is assumed as a fuzzy number. Here, it is
assumed that the supplier offers a credit-period (M) to the retailers
to stimulate demand. Retailer also initially offers a credit-period
(T0) to its customers for few cycles to boost the demand. During
these cycles demand increases with time at a decreasing rate. After
withdrawals of credit-period demand remains constant for the rest
of the cycles. There is only one imprecise constraint- sum of pro-
duction cycle lengths is less than the length of imprecise planning
horizon and the constraint will hold good to at least some necessity
a. Models are formulated for both the crisp and fuzzy inventory
costs. For crisp inventory parameters total profit under the above

mentioned constraint is maximized using the proposed GA to take
optimal decisions. When some inventory parameters are fuzzy in
nature then total profit out of the system is fuzzy in nature too.
As optimization of a fuzzy objective is not well defined, a fuzzy
goal for average profit is set and possibility/necessity of the fuzzy
objective (i.e., total profit) in respect to the fuzzy goal is optimized
under the above mentioned necessity constraint in optimistic/pes-
simistic sense (Dubois and Prade, 1980; Maiti, 2008). Finally, the
problem is transferred to an equivalent crisp model and solved
using the proposed GA. The models are illustrated with numerical
examples and sensitivity analysis on some inventory parameters
have been made.

2. Mathematical prerequisite

Let ~a and ~b be two fuzzy numbers with membership functions
l~aðxÞ and l~bðxÞ respectively. Then according to (Dubois and Prade,
1980; Zadeh, 1978),

posð~a � ~bÞ ¼ supfminðl~aðxÞ;l~bðyÞÞ; x; y 2 R; x � yg; ð1Þ

where the abbreviation pos represents possibility, ⁄ is any one of
the relations >, <, =, 6, P and R represents set of real numbers.

nesð~a � ~bÞ ¼ 1� posð~a � ~bÞ; ð2Þ

where the abbreviation nes represents necessity.
Similarly possibility and necessity measures of ~a with respect to

~b are denoted by P~bð~aÞ and N~bð~aÞ, respectively and are defined as

P~bð~aÞ ¼ supfminðl~aðxÞ;l~bðxÞÞ; x 2 Rg; ð3Þ

N~bð~aÞ ¼ minfsupðl~aðxÞ;1� l~bðxÞÞ; x 2 Rg: ð4Þ

If ~a; ~b # R and ~c ¼ f ð~a; ~bÞwhere f : R�R! R is a binary operation
then membership function l~c of ~c is defined as

For each z 2 R; l~cðzÞ ¼ supfminðl~aðxÞ;l~bðyÞÞ; x; y 2 R and
z ¼ f ðx; yÞg: ð5Þ

Triangular fuzzy number (TFN): A TFN ~a ¼ ða1; a2; a3Þ (cf. Fig. 1) has
three parameters a1, a2, a3 where a1 < a2 < a3 and is characterized
by the membership function l~a, given by

l~aðxÞ ¼

x�a1
a2�a1

for a1 6 x 6 a2;

a3�x
a3�a2

for a2 6 x 6 a3;

0 otherwise:

8><>: ð6Þ

Linear fuzzy number (LFN): A LFN ~a ¼ ða1; a2Þ (cf. Fig. 2) has two
parameters a1, a2 where a1 < a2 and is characterized by the mem-
bership function l~a, given by

l~aðxÞ ¼
0 for x 6 a1;
x�a1

a2�a1
for a1 6 x 6 a2;

1 for x P a2:

8><>: ð7Þ

0 a1 a2 a3 x

µã(x)

Fig. 1. Triangular fuzzy number a = (a1,a2,a3).
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