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a b s t r a c t

Master Production Schedules (MPS) are widely used in industry, especially within Enterprise Resource
Planning (ERP) software. The classical approach for generating MPS assumes infinite capacity, fixed pro-
cessing times, and a single scenario for demand forecasts. In this paper, we question these assumptions
and consider a problem with finite capacity, controllable processing times, and several demand scenarios
instead of just one. We use a multi-stage stochastic programming approach in order to come up with the
maximum expected profit given the demand scenarios. Controllable processing times enlarge the solu-
tion space so that the limited capacity of production resources are utilized more effectively. We propose
an effective formulation that enables an extensive computational study. Our computational results
clearly indicate that instead of relying on relatively simple heuristic methods, multi-stage stochastic pro-
gramming can be used effectively to solve MPS problems, and that controllability increases the perfor-
mance of multi-stage solutions.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Master Production Schedules (MPS) are widely used by manu-
facturing facilities to handle production and scheduling decisions.
In current industry practice, the MPS produces production sched-
ules in a finite planning horizon, assuming infinite capacity, fixed
processing times, and deterministic demand.

Our study is motivated by the following application. The largest
auto manufacturer in Turkey recently introduced a new multi-pur-
pose vehicle to the market. The company installed a single produc-
tion line with a limited production capacity and dedicated it to this
particular model. Since the production facilities are flexible, the
processing times could be altered or controlled (albeit at higher
manufacturing cost) by changing the machining conditions in re-
sponse to demand changes. As this model is new, the company
generated different demand scenarios for each time period. One
of the important planning problems was to develop a master pro-
duction schedule to determine how many units of this new model
would be produced in each time period along with the desired cy-
cle time (or equivalently, the optimal processing times) to satisfy
the demand and available capacity constraints, with the aim of
maximizing the total profit. This plan will be used in their Enter-
prise Resource Planning (ERP) system as an important input to
the materials management module to explode the component

requirements and generate the required purchase and shop floor
orders for the lower level components.

Motivated by this application, we consider the following prob-
lem setting. We have a single work center with controllable pro-
cessing times. The work center produces a single product type
with a given price, manufacturing cost function, processing time
upper bound, i.e., processing time with minimum cost, and maxi-
mum compressibility value. As in the case of MPS, we have a finite
planning horizon. The orders arrive at the beginning of each period
and the products are replenished at the end of the period. There is
an additional cost of postponement if the replenishment cannot be
done by the end of the period.

The demand of the first period is assumed to be known with
certainty prior to scheduling. However, the demand of the other
periods are uncertain; possible scenarios for demand realizations
and their associated probabilities are known. In our MPS calcula-
tions, the number of units of demand is defined in terms of the
multiples of a base unit. Therefore, a job represents the amount
of one base unit. Our objective is to maximize the total expected
profit by deciding how many units to produce, when to produce,
and how to produce them, i.e., the required processing times.

Our aim in this paper is to question the basic assumptions of MPS
regarding infinite capacity, fixed processing times, and determinis-
tic demand, and to propose a new approach that overcomes to an
extent the disadvantages caused by these assumptions and is com-
putationally efficient. In the remaining part of this section, we briefly
summarize the existing work on MPS, scheduling with controllable
processing times, and multi-stage stochastic programming. We con-
clude the section with an example that motivates our study.
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The classical approach for generating Master Production Sched-
ules assumes known demands, infinite capacity, and fixed process-
ing times. In the current literature on MPS, the demand uncertainty
is ignored during the schedule generation. As a result, the main re-
search focuses on the length of the frozen time period, i.e., the
number of periods in which production scheduling decisions are
not altered even when demand realizations turn out to be different
than the estimates. A longer frozen time period is less responsive
to demand changes, but creates less nervousness, while a shorter
one acts oppositely. Studies by Sridharan et al. (1987) and Tang
and Grubbström (2002) are examples that consider the effect of
the length of the frozen zone on production and inventory costs.
Based on his industry experience, Vieira (2006) points out that
the real complexity involved in making a master plan arises when
capacity is limited and when products have the flexibility of being
produced at different settings. As opposed to the current literature,
we consider different demand scenarios with given probabilities
along with the controllable processing times and finite capacity
of the available production resources while generating the
schedule.

There are several instruments that can be used to control pro-
cessing times. For example, in computer numerical control (CNC)
machining operations, the processing time can be controlled by
changing the feed rate and the cutting speed. As the cutting speed
and/or the feed rate increases, the processing time of the operation
compresses at an additional cost that arises due to increased tool-
ing costs, as discussed in Gurel and Akturk (2007). This scenario re-
sults in a strictly convex cost function for compression. Cheng et al.
(2006) study a single machine scheduling problem with controlla-
ble processing times and release dates. They assume that the cost
of compression is a linear function of the compression amounts.
Leyvand et al. (2010) provide a unified model for solving single-
machine scheduling problems with due date assignment and con-
trollable job-processing times. They assume that the job-process-
ing times are either a linear or a convex function of the amount
of a continuous and nonrenewable resource that is to be allocated
to the processing operations. In our study, we define the compres-
sion cost function f(y) = j � ya/b as discussed in Kayan and Akturk
(2005), where y is the amount of compression, a and b are two po-
sitive integers such that a > b > 0, and j is a positive real number.
We use a nonlinear compression cost function as opposed to a lin-
ear cost function as widely used in the literature, since it reflects
the law of diminishing marginal returns.

A review of scheduling with controllable processing times can
be found in Shabtay and Steiner (2007), in which they also summa-
rize possible applications in a steel mill and in an automated man-
ufacturing environment in addition to the automotive industry
example that we have discussed above. As far as our problem is
concerned, controllable processing times may constitute a flexibil-
ity in capacity since the maximum production amount can be in-
creased by compressing the processing times of jobs with, of
course, an additional cost. Thus, this scenario brings up the
trade-off between the revenue gained by satisfying an additional
demand and the amount of compression cost. The value of control-
lable processing times becomes even more evident during
economic crises, since they allow companies to adjust their pro-
duction quantities to meet the immediate demand that varies
significantly during the planning horizon more effectively.

Stochastic programming uses mathematical programming to
handle uncertainty. Although deterministic optimization problems
are formulated with parameters that are known with certainty, in
real life it is difficult to know the exact value of every parameter
during planning. Stochastic programming handles uncertainty
assuming that probability distributions governing the data are
known or can be estimated. The goal here is to maximize the
expectation of some function of the decisions and random vari-

ables. Such models are formulated, analytically or numerically
solved, and then analyzed in order to provide useful information
to a decision-maker.

Two-stage stochastic programs are the most widely used ver-
sions of stochastic programs. The decision maker takes some action
in the first stage, after which a random event occurs that affects the
outcome of the first-stage decision. A recourse decision can then be
made in the second stage to compensate for any negative effect
that might have been experienced as a result of the first-stage deci-
sion. A detailed explanation of stochastic programming, its applica-
tions, and solution techniques can be found in Birge and Louveaux
(1997) and a survey of two-stage stochastic programming is given
in Schultz et al. (1996). Using more than one stage in decision mak-
ing is also utilized in robust optimization. Atamturk and Zhang
(2007) apply two-stage robust optimization to network flow and
design problems. They give a numerical example that explains
the benefit of using two stages instead of a single one.

In multi-stage stochastic programming, decisions are made in
several decision stages instead of two. At each stage, a different
decision is made or recourse action is taken. Multi-stage stochastic
programming models may yield better results than two-stage
models since they incorporate data as they become available, and
hence enable a more certain environment for decision making.
On the other hand, they are generally more difficult to solve than
their two-stage counterparts, therefore, their applications are rare.

In the context of production planning, the early work of Holt
et al. (1956) explicitly considers uncertain demand and flexible
workforce capacity, whereas Charnes et al. (1958), Bookbinder
and Tan (1988) and Orcun et al. (2009) use chance constraints to
address problems with uncertain demand. Furthermore, Peters
et al. (1977), Escudero et al. (1993), Voss and Woodruff (2006),
Karabuk (2008) and Higle and Kempf (2011) apply multi-stage sto-
chastic programming to production planning. Balibek and Koksalan
(2010) apply a multi-objective multi-stage stochastic program-
ming approach for the public-debt management problem. Guan
et al. (2006) study the uncapacitated lot-sizing problem and
Ahmed et al. (2003) study the capacity expansion problem with
uncertain demand and cost parameters. Huang and Ahmed
(2009) provide analytical bounds for the value of multi-stage sto-
chastic programming over the two-stage approach for a general
class of capacity planning problems under uncertainty. To the best
of our knowledge, there is no study in the literature that applies
multi-stage stochastic programming to master production sched-
uling. Stochastic programming problems are generally considered
difficult (Dyer and Leen, 2006).

When the uncertain parameters evolve as a discrete-time sto-
chastic process with finite probability space, the uncertainty can
be represented with a scenario tree; Fig. 1.1 depicts an example.

Fig. 1.1. A scenario tree for three periods.
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