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The rectilinear distance Weber problem in the presence of a probabilistic line barrier
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a b s t r a c t

This paper considers the problem of locating a single facility in the presence of a line barrier that occurs
randomly on a given horizontal route on the plane. The objective is to locate this new facility such that
the sum of the expected rectilinear distances from the facility to the demand points in the presence of the
probabilistic barrier is minimized. Some properties of the problem are reported, a solution algorithm is
provided with an example problem, and some future extensions to the problem are discussed.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider locating a facility on the plane to serve a finite set of
existing demand points with different demand levels. One objec-
tive would be to find a location such that the sum of the distances
from the facility to the demand points is minimum. This is the clas-
sical Weber problem. Difficulties in solution methodologies occur
when there are restrictions on location.

Most of the restricted planar location problems that are studied
in the literature fall in one of the three categories. The first cate-
gory considers forbidden regions where no facility placement is al-
lowed or possible; however travelling through these regions is not
restricted. For an overview of planar location problems with for-
bidden regions, the reader is referred to Hamacher and Nickel
(1995).

The second category considers congested regions. A congested
region is a region where placement of a facility is forbidden but
travelling through is possible with some penalty.

The third category deals with barrier regions. Mountains, lakes,
military zones, existing facilities, railroads, highways, etc. can be
given as examples of barrier regions where neither travel through
these regions nor placement in a region is possible. Although facil-
ity location problems in the presence of barrier regions have more
practical relevance than general facility location problems, they
have not been given much attention until lately, due to the compu-
tational complexities associated with these problems. Table 1 is an
overview and classification of the facility location problems in the
presence of barrier regions studied in the literature.

Research in the area starts with Katz and Cooper (1981) which
is the first paper that considered the Weber problem with Euclid-
ean distances and barrier regions. The authors discussed the prob-
lem with one circular barrier and showed that the problem had a
non-convex objective function. A heuristic based solution approach
is proposed with no guarantee of the global optimum. Some prop-
erties of the problem were later analyzed by Klamroth (2004) who
suggested dividing the feasible region into some convex regions
where the objective function is convex in each region. The number
of such convex regions is bounded by OðN2Þwhere N is the number
of demand points. When N increases, construction of these convex
regions becomes cumbersome hence is not desired. To get over this
difficulty, Bischoff and Klamroth (2007) proposed a genetic algo-
rithm based solution to the problem.

Aneja and Parlar (1994) considered the Weber problem with
Euclidean distances and convex or non-convex polyhedral barriers.
The solution procedure proposed by the authors generates some
candidate locations using simulated annealing and, for each candi-
date location, a visibility graph is constructed to find the shortest
path network. The shortest path between any candidate location
and existing facility location is found using Dijkstra’s algorithm,
which finds shortest paths on networks in a polynomial time.

Butt and Cavalier (1996) developed an algorithm that finds
some local optima to the Euclidean distance Weber problem in
the presence of some polyhedral barriers. The authors proposed a
decomposition of the feasible region into subregions in which
shortest barrier distance between two points remain constant
throughout the region. The problem with this approach is that
the boundaries of the subregions are generally nonlinear. Klamroth
(2001a) suggested a different decomposition approach by applying
visibility grids to the same problem to overcome this difficulty.
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A modified version of the Big Square Small Square (BSSS) meth-
od was proposed by McGarvey and Cavalier (2003) for the Euclid-
ean distance Weber problems with barriers. The BSSS method is a
Branch and Bound (B&B) technique that divides the feasible region
into square subregions and produces either a global optimal solu-
tion or a solution within a very small tolerance of the global opti-
mum. The method was originally proposed by Hansen et al. (1981)
for locating obnoxious facilities. In this method non-convex polyg-
onal barrier regions can also be considered.

Larson and Sadiq (1983) is a seminal work that first considered
using the rectilinear distances for facility location problems in the
presence of barrier regions. The authors examined the rectilinear
distance p-median problem on the plane with polyhedral barrier
regions and defined a special structured grid that contains nodes
and edges. They discovered that this set of nodes provides a finite
dominating set of solution points for the problem.

These fundamental results motivated some researchers who
continued working on the same problem to provide some exten-
sions. First, Batta et al. (1989) extended the work by considering
both convex forbidden regions and arbitrarily shaped barriers. Sec-
ond, findings in the Ph.D. thesis by Segars (2000), and their exten-
sions were published by Dearing and Segars (2002a,b). In the first
paper, using the visibility idea, the authors showed that the barri-
ers can be modified without affecting the objective value, thus
allowing some non-convex barrier shapes to be equivalent to con-
vex ones. Also the feasible region can be reduced by this modifica-
tion, and it can be decomposed into rectangular cells and these
rectangular cells can be partitioned into convex domains where
the distance functions are convex and methods from convex opti-
mization can be used to solve the problem over these convex do-

mains. The second paper discusses this solution methodology
and provides an example, which gives an optimal solution on the
nodes as in Larson and Sadiq (1983) also in a convex cell. This is
important because one does not have to restrict herself to nodes
of the network to get an optimal value.

Similar results, based on smart ways of decomposition of the
planar feasible region, are provided by Dearing et al. (2002) for rec-
tilinear center location problems with polyhedral barriers, who
proposed an algorithm for the problem by considering a finite
number of candidate sets called dominating sets to find the opti-
mal location. Later, these results are extended by Dearing et al.
(2005) using block norm distances in place of rectilinear distances.
This work is also an extension to Hamacher and Klamroth (2000)
who first considered block norm distances for the Weber problem
with barriers.

There is also another body of research extending the studies of
Larson and Sadiq (1983) and Batta et al. (1989). The first study is
Savas et al. (2002), who proposed a model for the finite size facility
placement problem in the presence of some barriers under the rec-
tilinear distance norm. Interaction between a facility and demand
points is handled through the facility’s server point which is lo-
cated on the facility’s boundary. The demand points also interact
with each other. The finite size facility, which has a fixed size
and an arbitrary shape, acts as a barrier against the flow among
the demand points. The authors provided concavity results for a
facility location with fixed orientation and for a facility orientation
with a fixed location. Possible heuristics are suggested for simulta-
neous location and orientation decisions.

A special case of this problem in which the supply facility and
the demand facilities have rectangular shapes was discussed by

Table 1
Facility location in the presence of barriers literature overview.

Distance Objective Interaction Facility shape Barrier shape Barrier type Result

Katz and Cooper (1981) Euclidean Minisum User–facility Point Circular Fixed Heuristic
Larson and Sadiq (1983) Rectilinear Minisum User–facility Point Arbitrary Fixed Optimal
Batta et al. (1989) Rectilinear Minisum User–facility Point Arbitrary Fixed Optimal
Aneja and Parlar (1994) Euclidean Minisum User–facility Point Arbitrary Fixed Heuristic (SA)
Butt and Cavalier (1996) Euclidean Minisum User–facility Point Convex polygonal Fixed Local optimal
Hamacher and Klamroth

(2000)
Block Minisum User–facility Point Convex polygonal Fixed Optimal

Klamroth (2001a) Any Minisum or
center

User–facility Point Convex polygonal Fixed Optimal

Klamroth (2001b) Euclidean Minisum User–facility Point Line with
passages

Fixed Optimal

Dearing et al. (2002) Rectilinear Center User–facility Point Convex polygonal Fixed Optimal
Dearing and Segars (2002a) Rectilinear Minisum or

center
User–facility Point Arbitrary Fixed Optimal

Dearing and Segars (2002b) Rectilinear Minisum or
center

User–facility Point Arbitrary Fixed Optimal

Klamroth and Wiecek
(2002)

Any Minisum User–facility Point Line with
passages

Fixed Pareto optimal

Savas et al. (2002) Rectilinear Minisum User–user and user–
facility

Finite Arbitrary Variable Heuristic

Wang et al. (2002) Rectilinear Minisum User–facility Finite or
point

Rectangular Fixed Optimal

McGarvey and Cavalier
(2003)

Euclidean Minisum User–facility Point Convex polygonal Fixed Optimal

Nandikonda et al. (2003) Rectilinear Center User–facility Point Arbitrary Fixed Optimal
Klamroth (2004) Euclidean Minisum User–facility Point Circular Fixed Optimal
Dearing et al. (2005) Block Minisum or

center
User–facility Point Convex polygonal Fixed Optimal

Frieß et al. (2005) Euclidean Center User–facility Point Convex polygonal Fixed Optimal
(experimental)

Bischoff and Klamroth
(2007)

Euclidean Minisum User–facility Point Convex polygonal Fixed Heuristic (GA)

Kelachankuttu et al. (2007) Rectilinear Minisum User–user and user–
facility

Rectangular Rectangular Variable Multiple optimal

Sarkar et al. (2007) Rectilinear Center User–facility Finite Arbitrary Variable Optimal

This paper Rectilinear Minisum User–facility Point Line Probabilistic Optimal
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