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Established condition based maintenance modelling techniques can be computationally expensive. In
this paper we propose an approximate methodology using extended Kalman-filtering and condition
monitoring information to recursively establish a conditional probability density function for the residual
life of a component. The conditional density is then used in the construction of a maintenance/replace-
ment decision model. The advantages of the methodology, when compared with alternative approaches,
are the direct use of the often multi-dimensional condition monitoring data and the on-line automation
opportunity provided by the computational efficiency of the model that potentially enables the simulta-
neous condition monitoring and associated inference for a large number of components and monitored
variables. The methodology is applied to a vibration monitoring scenario and compared with alternative
models using the case data.
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1. Introduction

Condition based maintenance (CBM) scheduling and replace-
ment applications involve the utilisation of condition monitoring
(CM) information and prognostic models of an operational compo-
nent’s state or condition. In many studies, the underlying state of
the component is modelled as the residual life (RL), or time
remaining until failure, at discrete CM sampling points during its
operational life. However, when developing a prognostic model
for a given on-line automated application, two major consider-
ations are not effectively catered for in the existing literature on
CBM. The first issue is the incorporation of multi-dimensional
CM information without resorting to approximation and data
reduction. The second issue is an ability to rapidly process a large
amount of data without the use of numerical integration routines,
as required when using the existing techniques in the literature.
Established techniques such as proportional hazards modelling,
Kumar and Westberg (1997), Makis and Jardine (1991), and Love
and Guo (1991), non-linear probabilistic stochastic filtering, Wang
and Christer (2000), Wang (2002, 2006, 2007), and Wang and
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Zhang (2008), hidden Markov models, Bunks and Mccarthy
(2000), Makis and Jiang (2003) and Zhou et al. (2010), can be
computationally expensive to apply simultaneously to a large
number of individually monitored components and multi-dimen-
sional CM variables.

The Kalman-filter is a useful approach for discrete time state
estimation using stochastically related indicatory information;
see Jazwinski (1970). Efficient closed form updating and prediction
equations are easily established to recursively determine a poster-
ior distribution for the underlying state using the indicatory infor-
mation. As such, it is a useful technique for on-line CM applications
involving a large number of components and multi-dimensional
monitored variables when limited time and computational
resources are available, Christer et al. (1997). The standard
Kalman-filter can be derived within the framework of a general
non-linear filter when the system and observation dynamics
evolve linearly and the model errors are assumed to be indepen-
dent and follow O-mean Gaussian white noise processes; see
Jazwinski (1970) and Harvey (1989). However, in reality, these
assumptions rarely hold. There are a number of varieties of
extended Kalman-filter (EKF) available in the literature on stochas-
tic state estimation techniques, Liu et al. (2010). EKF’s are designed
to enable the application of variations on the standard Kalman
filtering methodology to linearised versions of non-linear systems
of equations. The linearisation is achieved using Taylor expansions
of the state and observation equations. The order of the filter is
dependent on the number of terms in the Taylor expansions that
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are included in the linearised equations, with a standard first order
EKF utilizing only the first term.

In this paper, a semi-deterministic form of the EKF is adapted
specifically for applications involving CM information where, the
underlying state that is the focus of the prediction effort is defined
as the RL of an individual component. We assume that the compo-
nent is subject to a single dominant mode of deterioration and fail-
ure. The deterministic element of the EKF process is designed to
facilitate the exact relationship between realisations of the actual
underlying RL at sequential CM points throughout the components
lifetime. We then illustrate the application of a vibration-based
version of the model using an example and compare the predictive
abilities of the model and the associated replacement decisions
with those obtained using a survival analysis model and a non-lin-
ear probabilistic filter-based model, Wang (2002). When con-
structing EKF algorithms for conditional RL prediction, the same
principles will apply when using different types of CM information,
such as oil analysis data, with the only difference being the speci-
fication of the relationship between the observed CM information
and the underlying RL.

2. A semi-deterministic extended Kalman filter
2.1. Problem description

We consider a plant subject to a CM process with CM information
available at discrete CM data sampling points. By sampling we mean
to take the CM data at regular or irregular intervals. Define Y; and X;
as the CM information and the hidden state of the plant at a partic-
ular sampling time t; where i is the ith CM since new. Our interest is
to estimate the hidden state X; from available CM information. We
suppose that Y; is multi-dimensional of the same or different nature,
which could be, for example, the vibration and temperature at t;, but
X;is a single dimensioned variable to describe the plant state which
isnotdirectly observable. However in order to keep the standard EFK
presentation, we still use a matrix notation for X;. There is no restric-
tion to the type of CM data and the type of the plant, but a fundamen-
tal assumption here is that Y; and X; are stochastically related with
each other through a conditional probabilistic density function of
Y;|X; which implies that Y; is a function of X; with some random
noise. Since the plant state degradation is a stochastically decreasing
process so the assumption requires that Y; is also stochastically
decreasing or increasing. In other words, a general trend must be
present in the measured CM data. The exact relationship between
Y; and X; will be problem specific and has to be decided at the model
fitting stage. For now we assume that such a conditional probabilis-
tic density function of Y;|X; exists.

2.2. The EKF model

Considering a discrete time process, the evolution of a general-
state random vector is described using the non-linear function

Xii1 =f(Xi =xi), (1)

where X; is the unknown realisation of the state at the ith discrete
CM time point, at time t;. Eq. (1) is called the ‘state transition’ equa-
tion. At the ith discrete CM time point, we describe the relationship
between an observed information vector and the underlying state
using the non-linear function, h, as

Yi = h(Xi =x;) + E;, (2)

where, Y; is the observation vector at t; and the measurement errors
are normally distributed as E; ~ N(0,R;) where R; is the covariance
matrix. Clearly Y;X; follows a normal distribution with mean h(x;)
and covariance matrix R;. Eq. (2) is called the ‘observation’ equation.

It is noted that the observation is modelled as a function of the
state, and therefore, is not used exogenously. Eq. (1) is deterministic
while Eq. (2) is stochastic because of E; and as such Egs. (1) and (2)
define a semi-deterministic Kalman filter.

The first step in applying the extended Kalman filtering meth-
odology is to linearise the functions f and h in the system of equa-
tions given by (1) and (2) as noted in Liu et al. (2010). At the ith
discrete time point, we define a;; = E[X;|J;] as the expectation of
X; that is conditioned on the observation history available until
that point; 3 ={Y1 =y.,Y2=Y,,...,Yi=Yy;}. We also define
;.1 = E[Xi11|3i] as a one-step prediction of X;,; that is again con-
ditioned on 3J;. The non-linear functions f and h are linearised
approximately as, Liu et al. (2010),

FXi =%i) = f(Xi = o) + f'(Xi = i) (Xi — i) (3)
h(X1 = Xi) ~ h(x1 = O(i\i—l) + h/(X,- = ai‘i,l)(x,- — ai\i—l)- (4)

Using these approximations, the state transition expression and the
relationship between the observation vector and the underlying
state are expressed as

Xip1 = f'(Xi = otii)X; + u, (5)
Yi = H'(Xi = o)X + Ei + W (6)

with ;= f{X; = ay;) — f(X;=a)o; and w; = h(X; = a;_1) — h'(X; =
oi_1)iji—1, where f and k' are the differentials of the functions f
and h respectively.

Assuming that the initial values for the underlying state, X = Xo,
and the associated covariance matrix, Py, are known or can be esti-
mated from the data, the Kalman filtering algorithm can then be ap-
plied directly to the linearised system given by Egs. (5) and (6) when
observing new information. The recursive algorithm incorporates
prediction and updating steps. At the ith discrete CM time point,
the equation for updating the mean estimate of the underlying state
with the availability of the observed information vector, Y; = y;, is

Qjji = %jji—1 + ki [yi - h/(xi = Oljji_1) i1 — Wi]
= i1 + ki[y; — h(Xi = ai_1)], (7)
where, the well known Kalman gain function (see Harvey (1989)) is
’ ’ ’ -1
ki =Pyi_1h'(X; = “i\i—l)T [h (Xi = ai_1)Py_1h' (X = ai\i—l)T + Ri] .
(8)

For a semi-deterministic EKF, using the original state transition
expression given by Eq. (1), a one-step forecast of the mean state
vector is simply

i = f (Xi = o) o + W = f(Xi = o). 9)
At the ith time point, the covariance matrix is updated using
Py = Py — kilt (Xi = otyiz1 ) Pyics (10)

and a one-step prediction of the covariance matrix is
P = f'(Xi = o) Py (Xi = ¢i|i)T~ (11)

This concludes the description of the semi-deterministic EKF algo-
rithm for general discrete time state-vector and observation-vector
processes. Higher order terms in the Taylor expansions of the sys-
tem and observation equations can also be incorporated; see the
appendix for details.

3. Residual life prediction using vibration information
3.1. Modelling the CM process

In this section, we tailor the EKF methodology to a CM scenario
involving vibration monitoring and RL estimation for operational
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