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a b s t r a c t

Solving multi-objective problems requires the evaluation of two or more conflicting objective functions,
which often demands a high amount of computational power. This demand increases rapidly when esti-
mating values for objective functions of dynamic, stochastic problems, since a number of observations are
needed for each evaluation set, of which there could be many. Computer simulation applications of real-
world optimisations often suffer due to this phenomenon. Evolutionary algorithms are often applied to
multi-objective problems. In this article, the cross-entropy method is proposed as an alternative, since
it has been proven to converge quickly in the case of single-objective optimisation problems. We adapted
the basic cross-entropy method for multi-objective optimisation and applied the proposed algorithm to
known test problems. This was followed by an application to a dynamic, stochastic problem where a
computer simulation model provides the objective function set. The results show that acceptable results
can be obtained while doing relatively few evaluations.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this article, we propose using the cross-entropy method
(CEM) of Rubinstein and Kroese (2004) for multi-objective optimi-
sation (MOO). It follows from the literature that the CEM is simple
and generally converges quickly in single-objective problems. Our
idea is to extend the CEM to problems with more than one objec-
tive, and apply the CEM to computationally expensive time-depen-
dent, stochastic simulation problems where the optimisation of
two or more objectives is pursued.

Multi-objective optimisation using evolutionary algorithms
(MOEAs) has been actively researched over the past 25 years (see
Coello et al., 2007 [p. 64]). Two major references among the many
journal publications are the books by Deb (2001) and Coello et al.
(2007). In a recent article, Coello (2009) highlighted current re-
search trends and open topics in the field of MOEAs, which include
discussion of alternative metaheuristics for solving MOO problems.
It is also noted that there is much focus on designing MOEAs that
reduce the number of objective function evaluations, because these
evaluations can be very expensive when optimising some real-
world problems.

Genetic algorithms (GAs) and other biologically inspired meta-
heuristics (e.g. ant colony and particle swarm optimisation) have
been widely applied in solving MOO problems. Arguably the
best-known evolutionary-based algorithms are the Multi-objective

genetic algorithm (MOGA) of Fonseca and Fleming (1993), the
Non-dominated sorting genetic algorithm (NSGA-II) of Deb et al.
(2002), the Niched-Pareto Genetic Algorithm (NPGA) of Erickson
et al. (1999), the Pareto Archived Evolution Strategy (PAES) of
Knowles and Corne (2000), the Strength Pareto Evolutionary Algo-
rithm (SPEA) of Zitzler and Thiele (1999), the Multi-objective
Messy Genetic Algorithm (MOMGA) of Van Veldhuizen and Lamont
(2000), and the Pareto Envelope-based Selection Algorithm (PESA)
of Corne et al. (2000). These algorithms and some of their variants
are discussed in Coello et al. (2007). The Adaptive Range Multi-
objective Genetic Algorithm (ARMOGA) of Sasaki and Obayashi
(2005) requires relatively few objective evaluations to find the Par-
eto front and has been applied in optimisation problems where
computationally intensive objective evaluations are needed, for
example in transonic wing design (Oyama et al., 2001).

The MOO problem, in general, is a problem of the type:

Minimise
f ðxÞ :¼ f1ðxÞ; f2ðxÞ; . . . ; fmðxÞ½ �; ð1Þ
giðxÞ 6 0; i ¼ 1;2; . . . ;p; ð2Þ
hiðxÞ ¼ 0; i ¼ 1;2; . . . ; q; ð3Þ

where the vector of decision variables is denoted by x = [x1,x2, . . . ,
xn]T, fi : Rn ! R, i = 1,2, . . . ,m, are the objective functions, while
the constraint functions are gi; hj : Rn ! R; i ¼ 1;2; . . . ; p; j ¼
1;2; . . . ; q ( Coello, 2009).

Since MOO problems usually have at least two conflicting objec-
tives, there exist many acceptable solutions for a given problem.
These form the Pareto optimal set. A few definitions pertaining to
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Pareto optimality are necessary, and the basic definitions in Coello
(2009) are repeated here for convenience:

Definition 1. Given two vectors u and v 2 Rm, we say that u 6 v if
ui 6 vi for i = 1,2, . . . ,m, and that u < v if u 6 v and u – v.

Definition 2. Given two vectors u and v 2 Rm, we say that u dom-
inates v (denoted by u � v) iff u < v.

Definition 3. A vector of decision variables x� 2 F (F is the feasi-
ble region) is Pareto optimal if there does not exist another x 2 F
such that f(x) � f(x*).

Definition 4. The Pareto optimal set P� is defined by P� ¼ fx 2 Fjx
is Pareto optimal}.

Definition 5. The Pareto front P�T is defined by P�T ¼ ffðxÞ 2 Rnjx 2
P�g.

Solving an MOO problem requires that the Pareto optimal set be
found from the set of all decision variable vectors that satisfy Eqs.
(2) and (3).

Multi-objective problems and solutions are widely reported in
the literature, for example in inventory management (Tsou, 2008;
Tsou, 2009; Mahapatra and Maiti, 2005), while Baesler and
Sepúlveda (2001) improved the design of a cancer treatment
centre based on four objectives. Li et al. (2009) used a multi-
optimisation method in an environmentally conscious design of
chemical processes and products. Kleijnen and Wan (2007) studied
optimisation of simulated systems by comparing some optimisa-
tion methods. These include a brute-force approach, modified
response surface methodology (RSM), perturbation analysis (PA)
and feasible directions (FD).

Evolutionary Algorithms (EA) are widely used in MOO research
and applications. Beausoleil (2006) applies a multiple-objective
scatter search (MOSS) to test problems from the literature, and Deb
et al. (2002) improve on existing algorithms with their NSGA-II.
Coello et al. (2004) apply particle swarm optimisation while
incorporating Pareto dominance. Summanwar et al. (2002) solve
constrained optimisation problems using multi-objective genetic
algorithms, while Zitzler and Thiele (1999) apply the SPEA to the 0/
1 knapsack problem. Gil et al. (2007) developed a hybrid method
for solving MOO problems by combining e.g. PESA and NSGA-II. In
other applications, specific methods are developed to solve MOO
problems, e.g. Lee (2007) developed a trajectory-informed search
methodology and applies it to several test problems. Chapter 7 in
Coello et al. (2007) presents a comprehensive reference of appli-
cations in engineering, science, industry and miscellaneous fields
(e.g. investment portfolio optimisation and stock ranking). A
comprehensive list of references is maintained at the EMOO home
page (http://www.lania.mx/�ccoello/).

The cross-entropy method is a relatively recent development by
Reuven Rubinstein. He originally developed it for use in the field of
importance sampling (Rubinstein, 1997), but it has been extended
to many other types of problems, including continuous optimisa-
tion and combinatorial optimisation. Specific examples are solving
problems like the Rosenbrock function (Rubinstein and Kroese,
2004, p. 89, the max-cut problem (p. 140), the Travelling Salesman
Problem (p. 147) and the capacitated vehicle routing problem (p.
238).

We next discuss the cross-entropy method, followed by the
proposed algorithm for multi-objective optimisation using the
CEM. We show metrics resulting from its application to various
deterministic benchmark (test) problems, and finally its applica-
tion to a simulated, stochastic problem.

2. Optimisation and the cross-entropy method

The CEM for optimisation is briefly outlined in this section, and
for detail the reader is referred to Rubinstein and Kroese (2004),
the CEM website (http://www.cemethod.org) and Kroese and
Rubinstein (2005), the latter being a complete journal issue de-
voted to the cross-entropy method. The CEM for optimisation has
its foundation in Importance Sampling and the Kullback–Leibler dis-
tance, and these are discussed first (Rubinstein and Kroese, 2004).

Let X = (X1, . . . ,Xn) be a random vector assuming values from
some space X , and let f be some real function on X . Suppose we
want to determine the probability that f(X) is greater or equal than
a real number c under a family of probability density functions
h(�;u) on X . This probability is

l ¼ Puðf ðXÞP cÞ ¼ EuI f ðXÞPcf g: ð4Þ

f(X P c) is called a rare event if l is very small, and it can be effi-
ciently estimated using importance sampling. To do so, we take a
random sample X1, . . . ,XN from a different density g on X , and esti-
mate l using the likelihood ratio estimator (Rubinstein and Kroese,
2004):

l̂ ¼ 1
N

XN

i¼1

Iff ðXiÞPcg
hðXi; uÞ

gðXiÞ
: ð5Þ

Now use the change of measure with density

g�ðxÞ ¼ I f ðxÞPcf ghðx; uÞ
l

; ð6Þ

then

l ¼ I f ðXiÞPcf ghðXi; uÞ
g�ðXiÞ

: ð7Þ

The value of g* depends on the unknown l, but g* can be approx-
imated within the family of densities {h(�;v)} with reference
parameter v such that the distance between g* and h(�;v) is mini-
mal. A measure of this distance is the Kullback–Leibler distance or
cross-entropy between g and h, and it is defined as:

Dðg;hÞ ¼ Eg ln
gðXÞ
hðXÞ ð8Þ

¼
Z

gðxÞ ln gðxÞdx�
Z

gðxÞ ln hðxÞdx: ð9Þ

To minimise the Kullback–Leibler distance between g* in Eq. (6)
and h(�;v), v is chosen such that �

R
g�ðxÞ ln hðx; vÞdx is minimised.

This can be achieved by solving the maximisation problem

max
v

Z
g�ðxÞ ln hðx; vÞdx: ð10Þ

When g* of Eq. (6) is substituted in Eq. (10), the maximisation
program

max
v

Z
I f ðxÞPcf ghðx; uÞ

l
ln hðx; vÞdx ð11Þ

is obtained, which is equivalent to the program

max
v

DðvÞ ¼max
v

EuI f ðXÞPcf g ln hðX; vÞ: ð12Þ

With reference to the above, the CEM for optimisation can now
be stated. Suppose we wish to find the maximum of some perfor-
mance function f(x) over all states x in some set X . Let the maxi-
mum be c*, then

c� ¼max
x2X

f ðxÞ: ð13Þ

The deterministic problem is randomised by defining a family of
probability density functions fhð�; vÞ;v 2 Vg on the set X . The asso-
ciated stochastic problem of Eq. (13) is the estimation problem
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