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1. Introduction

In a recent paper, Xie et al. (2010) provided an analytical model to quantify the effects of early order commitment (EOC) strategy on the
performance of a two-level supply chain consisting of a single manufacturer and N independent retailers. Under EOC strategy, retailer i
(i=1,2,...,N) places her order x; periods in advance, where x; is called the EOC period for retailer i. In order to minimize the expected hold-
ing and shortage cost per period for the whole supply chain, Xie et al. (2010) proposed the following optimization problem:
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where x = (Xq,X,. . .,Xy) are decision variables, and Ly >0, 19> 0, L;>0,d;>0,0;>0,0<p;<1and r;>0 (i=1,2,...,N) are known parameters
(please refer to Xie et al., 2010 for details). They failed to provide an algorithm to find an optimal solution to Problem (1). In Section 2 of this
note, we propose a polynomial-time algorithm to find the optimal solutions.

Xie et al. (2010) also proposed a wholesale price discount scheme to induce the retailers to practice EOC strategy and identified a set of
sufficient conditions under which the scheme coordinates the whole supply chain. In Section 3 of this note, we provide a new set of suf-
ficient conditions which also leads to supply chain coordination.

2. An optimal algorithm

In Theorem 1 of Xie et al. (2010), they identified an amazing characteristic for the optimal solutions of Problem (1): the EOC period x; for
each retailer i should be either 0 or Ly + 1. Therefore, we can define y; = (Lo + 1 — x;)/(Lo + 1), where y; € {0,1} (i=1,2,...,N), and y; = 0 means
that retailer i uses EOC policy, and y; = 1 means that retailer i does not use EOC policy. After the variable redefinition, the objective function
SC(x) in Problem (1) can be expressed as a function of y = (y1,¥2,...,Yn):
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Since a;, b;, ¢ are constants independent of the decision variables, Problem (1) is equivalent to the following 0-1 programming problem:
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Now consider the following class of 0-1 programming problems:
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where a; >0, b;>0,0 < p <1andq > 1. Obviously, Problem (6) is a special case of Problem (7) with p =1/2, q = 1. For Problem (7), we have
the following theorem.

Theorem 1. Suppose that N pairs of positive numbers (a;,b;), i=1,2,...,N, satisfy a;/ b; > as/b, > as/b3 > --- > an/bn.

(a) If p=q =1, then there exists a binary vector y =(y1,y,...,yn) minimizing (7) and satisfying the following property: If y;=0 for some j
(1 <j<N) theny;=0 for any 1 <i<j.

(b)yIfo<p<landq > 1,0r0<p < 1andq> 1, then the binary vector y = (y1,¥2, .. .,yn) minimizing (7) should satisfy the following property:
If y;=0 for some j (1 <j<N), then y;=0 for any 1 <i<j.

Proof. Part (a) is obviously true. For Part (b), we only provide a proof for the case of 0 < p <1 and q > 1, since the proof for the other case is
similar.

Suppose y is a binary vector minimizing (7) with y; =0 for some j (1 <j < N) and y; =1 for some 1 < i<j. Denote y’ as a binary vector
where y; = 0 and y}, = y, for all k = i. By contradiction, we only need to prove that f{y’) < f{ly).

Denote A = 37, .;;axy and B = 37, ; iby,. By definition of fly), fly’) < fly) is equivalent to

(A+a)’ — AP > (B+b;)? — BY. (8)

To prove Inequality (8), we choose y” such that y/ =y} = 1 and y; = y, for all k # i, j. Since y is an optimal solution of (7), we have fly) < fly"),
which is equivalent to

A+ai+a) — (A+a) > (B+bi+b)"— (B+b). (9)

Since @;> 0 and b; >0 for all i=1,2,...,N, Inequality (9) implies Inequality (8) if the following inequality holds:
(A+a)P — AP (B+b)? - B
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Now we prove Inequality (10). Consider a function g(u) = uP. By Mean Value Theorem, there exists a ¢ € (A + a;A + a; + g;) such that
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Similarly, there exists a 1 € (A,A + q;) such that
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Clearly, 0 <# < ¢&. This, together with the fact that g'(u)=puP~' (0<p<1) is strictly decreasing with respect to u (u>0), implies that
pnP~1 > peP~1. Therefore, by Eqs. (11) and (12), we have
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which is equivalent to
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