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a b s t r a c t

In this paper we propose an exact method able to solve multi-objective combinatorial optimization prob-
lems. This method is an extension, for any number of objectives, of the 2-Parallel Partitioning Method
(2-PPM) we previously proposed. Like 2-PPM, this method is based on splitting of the search space into
several areas, leading to elementary searches. The efficiency of the proposed method is evaluated using a
multi-objective flow-shop problem.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Multi-objective optimization problems (MOPs) are mostly NP-
hard. Part of the difficulty comes from the existence of several opti-
mal solutions (solutions that represent the best compromise be-
tween objectives). Hence, a lot of heuristic methods (in particular
meta-heuristics) have been proposed to solve multi-objective com-
binatorial optimization problems.

In this paper, we are interested in solving MOPs exactly. Exist-
ing exact methods are mainly methods for tackling bi-objective
problems (Two-phase method, �-constraints approach, 2-PPM. . .).
Only very few methods are able to find all efficient solutions for
a problem with K objectives. The first one, a ‘‘Recursive algorithm
for multi-objective combinatorial optimization problems with Q-
criteria” [16,4] is an extension of the two-phases method [18].
The second one, an ‘‘Adaptive scheme to generate the Pareto front
based on the �-constraint method”, is a generalization of the �-con-
straint method [8].

In this paper, we present a new exact method able to solve mul-
ti-objective combinatorial optimization problems (with any num-
ber of objectives), named K-PPM [10]. This method is able to
enumerate the whole set of Pareto solutions. In this paper, minimi-
zation problems are addressed, but the method may easily be
adapted to maximization problems.

This article is organized as follows: Section 1 defines the main
concepts of Multi-objective optimization. Section 2 exposes the
existing bi-objective and multi-objective exact methods. Section

3 presents the extension of the 2-Parallel Partitioning Method
(2-PPM) for any number of objectives. Section 4 presents a parall-
elization model of this method. Section 5 details the experiments.
It presents the three-objective permutation flow-shop problem
used as an illustration and discusses performance results of the dif-
ferent approaches. Finally, a conclusion and some perspectives of
the work are given.

1.1. Multi-objective combinatorial optimization

In this part, we describe and define multi-objective optimiza-
tion problems (MOPs) in the general case.

We assume that a solution x to such a problem can be described
by a decision vector ðx1; x2; . . . ; xnÞ in the decision space X. This
decision vector represents the values given to the variables of the
problem. A cost function f : X! Y assigns to x an objective vector
ðf1ðxÞ; f2ðxÞ; . . . ; fKðxÞÞ in the objective space Y. In this context, the
multi-objective optimization problem consists in finding solutions
in the decision space optimizing (minimizing or maximizing) K
objectives (we note K for the set of the K considered objectives).

In multi-objective optimization problems, where an objective
vector ðf1; f2; . . . ; fKÞ has to be optimized, typically no single optimal
solution exists but rather a set of solutions of the best compromise.
These solutions form the Pareto front. They may be defined using
the notion of dominance:

Definition 1. In a minimization problem, a solution x dominates a
solution x0 if and only if:

8k 2K; f kðxÞ 6 fkðx0Þ;
9k 2K; f kðxÞ < fkðx0Þ:
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In this context, the Pareto optimality definition is:

Definition 2. A solution is Pareto optimal if it is not dominated by
any other solution of the feasible set. Such a solution is called
‘efficient’.

Definition 3. A Pareto solution is called supported if it can be
obtained by optimizing a linear combination of the objectives. Such
a solution belongs to the convex hull of the Pareto front.

Let us introduce some notations useful for the rest of the article.
Let K be the set of the K considered objectives.
Let OptK be the set of efficient solutions for a problem with K

objectives, and OptK�l
k be the set of efficient solutions for a problem

with K � l objectives, where k represents the set of the K � l objec-
tives taken into consideration. Then let us define:

OptK�l ¼
[

8k�KjcardðkÞ¼K�l

OptK�l
k ;

the set of efficient solutions for all the sub-problems of size K � l
that can be created from the problem of size K, where the size of
a problem is defined here by the number of objectives considered.

Particular points of the objective space will be used in the rest
of the article and must be introduced here: the Ideal and the Nadir
points. These points represent a lower and an upper bound of the
Pareto front.

Definition 4. Ideal and Nadir points:

(1) Point I ¼ ðf1ðIÞ; . . . ; fKðIÞÞ, with fkðIÞ ¼minx2XfkðxÞ;8k 2K, is
called Ideal point.

(2) Point N ¼ ðf1ðNÞ; . . . ; fKðNÞÞ, with fkðNÞ ¼maxx2OptK fkðxÞ;
8k 2K, is called Nadir point.

As we will see later (Section 3.1) the computation of the Nadir
point is not straightforward when the number of objectives is
greater than 2. This requires the calculation of OptK .

2. Existing exact methods

In this section, we present methods able to enumerate all the
Pareto solutions of an MOP. First bi-objective methods are ad-
dressed and then two multi-objective methods (for any number
of objectives) are described.

2.1. Bi-objective exact methods

There are several exact methods to solve bi-objective combina-
torial optimization problems. A lot of these methods are linked to a
particular problem, some others do not find the whole Pareto set
(e.g., aggregation based methods). Nevertheless, some general
methods able to find all the Pareto solutions for any combinatorial
optimization problem exist. They are briefly presented here. To
find more details on bi-objective exact methods, the reader may re-
fer to [17].

2.1.1. The two-phases method
This method, proposed by Ulungu and Teghem [18], determines

all the efficient solutions in two steps. The first phase consists in
finding all supported solutions with the optimization of aggrega-
tions in the form k1f1 þ k2f2. It starts by determining the extreme
points of the front. Then supported solutions are found by search-
ing recursively between two given supported solutions. Following
this, the second phase consists in exploring all the triangles, under-
lying each pair of adjacent supported solutions, in order to find all

the non-supported solutions. This method has been applied effi-
ciently on the bi-objective assignment problem.

2.1.2. �-constraint
The �-constraint method is an application of the �-constraint

concept (introduced in [7]) to enumerate Pareto solutions. This
method involves a constraint on one objective and optimizes the
second objective. The constrained problem may be expressed by:
minff1ðxÞ : x 2 X; such that f 2ðxÞ 6 �g. The complete scheme is as
follows: first, one extreme is computed, for example x1 the extreme
with the best value on the objective f1. This solution determines a
bound on objective f2, and the best solution regarding f1 has to be
searched for below this bound on f2. This operation is repeated un-
til no new solution is found. With this scheme, the whole efficient
set is found.

2.1.3. 2-PPM
We previously proposed the Parallel Partitioning Method for bi-

objective problems in [10]. This method determines the whole Par-
eto front in three stages. In the first stage, the Ideal and the Nadir
points are computed in order to limit the search space. These solu-
tions may be found thanks to the extreme solutions in the bi-objec-
tive case. In the second stage, well distributed efficient solutions
are searched for in order to divide the search space (during this
step, supported as well as non-supported solutions are found).
The third stage consists in finding the other efficient solutions by
reducing the search space using solutions found during the second
stage. This method has been successfully applied on a bi-objective
flow-shop problem [10].

2.2. Multi-objective exact methods

All the methods described in the last section can only be applied
to bi-objective optimization problems. In this section, two existing
multi-objective exact methods are presented.

2.2.1. A recursive algorithm for multi-objective combinatorial
optimization problems with K objectives

This method was initially proposed by Tenfelde-Podehl [16] and
was tested on the quadratic assignment problem. It is a generaliza-
tion of the two-phases method for more than two objectives.

This algorithm starts by finding all the solutions belonging to
the set OptK�1 in order to calculate the Nadir point of the K-objec-
tive problem. Then sub-spaces are determined with these solu-
tions. For every sub-space, an axis of research is computed, and a
single objective problem is solved. When a new solution is found,
the search space is split and some new searches are launched. This
method stops once all the search spaces have been examined and
no new solution is found. With this method, the search space is
split in order to visit only the pertinent sub-spaces and a single
objective search is required for each Pareto solution. Therefore, if
for a given problem, single objective searches are time-consuming,
a lot of time is required to solve instances of this problem.

2.2.2. An adaptive scheme to generate the Pareto front based on the �-
constraint method

This method, proposed by Laumans et al. [8], is a generalization
of the �-constraint method.

To find Pareto optimal solutions, some lower and upper bounds
are given to single objective searches. The first search is made on
the whole search space, then each solution found is used to bound
sub-spaces.

The core of the algorithm is a K � 1 dimensional hypergrid,
which splits the objective space into rectangles parallel to the axis
f2; . . . ; fK . When a new Pareto solution is found, the grid is split. If
no new solution is found, the next rectangle of the grid is visited.
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