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a b s t r a c t

This paper derives explicit closed form solutions, for the efficient frontier and optimal investment strat-
egy, for the dynamic mean–variance portfolio selection problem under the constraint of a higher borrow-
ing rate. The method used is the Hamilton–Jacobi–Bellman (HJB) equation in a stochastic piecewise
linear-quadratic (PLQ) control framework. The results are illustrated on an example.
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1. Introduction

Mean–variance portfolio selection has been a central issue in finance since Markowitz’s pioneering work [17] on a single-period invest-
ment model. Generalizations of this work have followed two main venues. On one hand, multi-period portfolio selection has been exten-
sively studied, see for instance, Mossin [19], Samuelson [21], Hakansson [11], Francis [9], Compbell et al. [2], Li and Ng [14] and the
references therein. On the other hand, continuous-time portfolio selection models have been investigated by Merton [18], Karatzas
et al. [13], Cox and Huang [5], Duffie and Richardson [7], Dumas and Luciano [8], Grossman and Zhou [10], Zhou and Li [25]. The martingale
approach to utility maximization, was independently developed by Karatzas et al. [13], and Cox and Huang [5] for the case of complete
markets. The utility function is usually assumed to be a continuous, increasing and strictly concave function such as a power, logarithm,
exponential or quadratic function. The risk and return relationship is implicit in the utility function approach and cannot be disentangled at
the level of optimal strategies. We note that optimality in the utility theory does not necessarily correspond to optimality under mean–
variance, and that these two constitute different approaches. Constrained portfolio selection problems have been extensively studied by
Cvitanic and Karatzas [6], Paxson [20], Karatzas and Kou [12], Carassus et al. [1], using mainly the utility function theory, and the duality
approach, which was then extended by [6,22].

Recently, using the so-called indefinite stochastic linear-quadratic (LQ) control theory (see, e.g., [3,4,24]), Zhou and Li [25] introduced a
continuous-time mean–variance portfolio selection model without any constraints, leading to a closed form analytical optimal portfolio
strategy and obtained an explicit expression of the efficient frontier. This work used the classical Riccati approach. Next, [15] considered
the same problem but with a short-selling constraint. Since the Riccati approach fails in this case, the Hamilton–Jacobi–Bellman equation
was directly used. The novelty in this LQ control approach, as opposed to the duality method of [6,22] was that viscosity solution tech-
niques as in [26] were used.

In this paper, we consider continuous-time mean–variance portfolio selection with a new constraint, that is a borrowing constraint, i.e,
under different interest rates for borrowing and lending, rendering the market incomplete. This constraint forces the problem to become
piecewise linear-quadratic and is hence no longer LQ. As a result the Riccati approach fails again. We construct two special Riccati
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equations as a continuous (actually a viscosity) solution to the HJB equation. We obtain an explicit closed form solution for the optimal
strategy as well as the efficient frontier. In this investment framework, we investigate and quantify how the borrowing restriction affects
the relative investments in different risky assets. For ease of readability, the main financial results are presented first, and illustrated by an
example next, and the technical mathematical proof is differed to the last section.

The outline of this paper is as follows: Section 2 gathers the notation and problem formulation. Section 3 presents the mean–variance
portfolio strategy theorem under the constraint of a higher borrowing rate. Section 4 contains the main theorems on the efficient frontier
and the optimal portfolio strategy. Section 5 illustrates the main results on a test case example. Section 6 contains the technical proof of the
main theorem in Section 3, in the stochastic piecewise linear-quadratic (PLQ) control framework. Section 7 concludes this work.

2. Problem formulation

Throughout this paper we denote by M0 the transpose of any matrix or vector M ¼ ðmijÞ, kMk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jm
2
ij

q
its norm, Rn the n dimensional

real space, 1 ¼ ð1; . . . ;1Þ the vector with unit entries, x� ¼ �minðx;0Þ, ½0; T� the finite horizon of investment and E the expectation. Market
uncertainty is modeled by a filtered complete probability space ðX;F;P; fFtgtP0Þ and a standard fFtgtP0-adapted m-dimensional Brown-
ian motion WðtÞ � ðW1ðtÞ; . . . ;WmðtÞÞ0. We recall that the space L2

Fð0; T;RmÞ of mean square integrable functions uðt;XÞ from R�X to Rm

possesses a natural Hilbert space structure, inducing the norm

kukF;2 ¼ E
Z T

0
kuðt;XÞk2dt

� �1
2

< þ1:

We consider a financial market where mþ 1 assets are traded continuously over ½0; T�. The first asset is a bond whose price S0ðtÞ evolves
under two different borrowing and lending rates, according to the differential equation

dS0ðtÞ ¼
rðtÞS0ðtÞdt; if S0ðtÞP 0; t 2 ½0; T�;
RðtÞS0ðtÞdt; if S0ðtÞ < 0; t 2 ½0; T�;

�
S0ð0Þ ¼ s0 > 0;

8><>: ð1Þ

i.e.,

dS0ðtÞ ¼ ðrðtÞS0ðtÞ � ðRðtÞ � rðtÞÞS0ðtÞ�Þdt; t 2 ½0; T�;
S0ð0Þ ¼ s0 > 0;

�
where rðtÞð> 0Þ is the interest rate of the bond and RðtÞ is the borrowing rate being larger than rðtÞ. The remaining m assets are modeled by
GBM

dSiðtÞ ¼ SiðtÞðbiðtÞdt þ
Pm
j¼1

rijðtÞdWjðtÞÞ; t 2 ½0; T�;

Sið0Þ ¼ si > 0;

8><>: ð2Þ

where bðtÞ :¼ ðb1ðtÞ; . . . ; bmðtÞÞ0 are the drifts with biðtÞ > RðtÞ and rðtÞ :¼ ðrijðtÞÞ is the volatility matrix. We assume throughout that rðtÞ, RðtÞ,
bðtÞ and rðtÞ are deterministic, Borel-measurable and bounded on ½0; T�, and that the following non-degeneracy condition holds

rðtÞrðtÞ0 > 0; 8t 2 ½0; T�; ð3Þ

that is, rðtÞrðtÞ0 is positive semi-definite 8t 2 ½0; T�. Denote by XðtÞ an investor’s total wealth at time t P 0, invested in NiðtÞ shares of the ith
asset ði ¼ 0;1; . . . ;mÞ, that is XðtÞ ¼

Pm
i¼0NiðtÞSiðtÞ; t P 0. Let uiðt;XðtÞÞ or uiðtÞ for short denote NiðtÞSiðtÞ, that is the total market value of the

investor’s wealth in the ith stock and u0ðtÞ ¼ N0ðtÞS0ðtÞ in the bond. In particular, X0 > 0 is the initial wealth. In this work, transaction cost
and consumptions are not considered, and trading is assumed to take place continuously. Since the NiðtÞ are integers, or invoking self-financ-
ing, the dynamics of the wealth process XðtÞ; t P 0 after re-arranging some terms is seen to follow the stochastic differential equation,

dXðtÞ ¼
Xm

i¼0

NiðtÞdSiðtÞ ¼ ðrðtÞN0ðtÞS0ðtÞ � ðRðtÞ � rðtÞÞN0ðtÞS0ðtÞ� þ
Xm

i¼1

biðtÞNiðtÞSiðtÞÞdt þ
Xm

i¼1

NiðtÞSiðtÞ
Xm

j¼1

rijðtÞdWjðtÞ

¼ ðrðtÞXðtÞ þ
Xm

i¼1

ðbiðtÞ � rðtÞÞuiðtÞ � ðRðtÞ � rðtÞÞðXðtÞ �
Xm

i¼1

uiðtÞÞ�Þdt þ
Xm

j¼1

Xm

i¼1

rijðtÞuiðtÞdWjðtÞ;Xð0Þ ¼ X0: ð4Þ

Note that the portfolio uðtÞ :¼ ðu1ðtÞ; . . . ;umðtÞÞ0 is dynamic i.e., changes over time.

Remark 2.1. We do not constrain the amount uiðtÞ invested in the ith stock to take positive values, in other words, short-selling of stocks is
allowed.

Remark 2.2. Borrowing from the money market at the rate RðtÞ is allowed. This is reflected in the term ðRðtÞ � rðtÞÞðXðtÞ �
Pm

i¼1uiðtÞÞ� of
(4). Because of this, this problem is no longer linear-quadratic, and is piecewise linear-quadratic, or (PLQ). See Section 7 for more detail.

Remark 2.3. The above features distinguish this work from [15] and lead to a different mathematical formulation.

For a prescribed target expected terminal wealth EXðTÞ ¼ K , mean–variance portfolio optimization consists of determining a dynamic
portfolio satisfying all the constraints of a given framework, and minimizing the risk as measured by the variance of the terminal wealth,
that is minimizing

VarXðTÞ ¼ E½XðTÞ � EXðTÞ�2 ¼ E½XðTÞ � K�2:
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