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a b s t r a c t

In this paper we propose a covering problem where the covering radius of a facility is controlled by the
decision-maker; the cost of achieving a certain covering distance is assumed to be a monotonically
increasing function of the distance (i.e., it costs more to establish a facility with a greater covering radius).
The problem is to cover all demand points at a minimum cost by finding optimal number, locations and
coverage radii for the facilities. Both, the planar and discrete versions of the model are considered. Heu-
ristic approaches are suggested for solving large problems in the plane. These methods were tested on a
set of planar problems. Mathematical programming formulations are proposed for the discrete problem,
and a solution approach is suggested and tested.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The location set covering problem (LSCP), introduced by ReVelle
et al. (1976), is one of the classic models in the location literature.
The problem is to cover the customer demand, assumed to be con-
centrated at a discrete set of points, with the minimum number of
facilities. Each facility has a constant coverage radius r, a demand
point is assumed to be ‘‘covered” if it is within distance r of a facil-
ity. This model has a wide range of applications, including emer-
gency response system design, location of retail facilities, design
of computer networks, etc. (for reviews see Schilling et al., 1993;
Daskin, 1995; Current et al., 2002; Plastria, 2002). A close relative
of LSCP is the maximal cover location problem MCLP, where the
goal is to cover the maximum amount of demand with a certain
number of facilities; for network formulations see Church and
ReVelle (1974), Megiddo et al. (1983), ReVelle (1986) and Berman
(1994), and for planar problems see Drezner (1981), Watson-
Gandy (1982), Drezner (1986) and Canovas and Pelegrin (1992).

The covering radius r in LSCP (and in MCLP) is assumed to be an
exogenous parameter, outside of the control of the decision-maker.
However, in many (if not most) applications, the coverage radius of
a facility is one of the design parameters: a larger or smaller cover-
age radius can be achieved by increasing or decreasing the ‘‘size” of
the facilities (here by ‘‘size” we refer to the physical characteristic
of the facility that is related to the coverage radius). For example,
locating warning sirens (Current and O’Kelly, 1992) is modeled as

a p-center problem but the coverage radius depends on the inten-
sity of the siren. When locating light posts to illuminate a certain
area, the coverage radius of each individual light depends on the
intensity of the light bulb and the height of the post. When locating
detectors to warn of fire or other hazards (Drezner and Wesolow-
sky, 1997), the distance at which the detector discovers the hazard
depends on the sensitivity of the detector. The signal strength of a
radio station determines the coverage area. In the design of cellular
telephone networks, the height of the tower and the signal
strength of the transmitter affect the coverage radius. Retailers
generally expect larger stores to have larger trading areas. In de-
sign of public service facilities (such as schools or hospitals), larger
facilities serve more patients (or students) leading to a larger cov-
ering distance. Longer runways at an airport allow it to service lar-
ger planes, thus allowing arrivals and departures of airplanes from
larger distances.

The common feature of the examples above is that, at a certain
cost, it is possible to adjust the coverage radius of a facility, with
larger coverage radii requiring larger capital investments. In this
paper we propose a Variable Radius Covering Problem where a
decision-maker has to determine the optimal number, locations
and coverage radii for the facilities to cover a discrete number of
demand points at a minimal cost. We assume that the cost of con-
structing a facility with coverage radius r is given by a non-
decreasing cost function /ðrÞ. Two versions of the model are ana-
lyzed: in the planar version, the facilities can be located anywhere
within a certain region of a plane; in the discrete version, the de-
mand is assumed to come from a finite set of points and the facil-
ities locations set is also finite.
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To the best of our knowledge, the direct trade-off between the
coverage radius and the facility cost is novel to our model. How-
ever, there has been some prior work on relaxing the ‘‘fixed cover-
age radius” assumption of the LSCP. One stream of research
investigated the hierarchical covering problem where a set of dif-
ferent possible coverage radii is given and two possible objectives
apply (Daskin and Stern, 1981; Church and Eaton, 1987). The max-
imal expected covering problem (where there is some uncertainty
about whether a demand point will be covered) is investigated in
Daskin (1983) and Batta et al. (1989). Another stream of research,
in the MCLP context, is gradual covering problems, where demand
points that are too far away from the facility are assumed to be
only partially covered. In one version of the problem (Berman
and Krass, 2002) the proportion of the demand covered is a
decreasing stepwise function of the coverage radius. In another
version there is a minimum and maximum covering distance.
The demand is fully covered within the minimum distance and is
not covered at all beyond the maximum distance. Between these
two distances the coverage is gradually declining either linearly
or otherwise (Berman et al., 2003; Drezner et al., 2004). In Drezner
et al. (2004) the single facility case in the plane using Euclidean
distances is optimally solved.

Carrizosa and Plastria (1998) and Plastria and Carrizosa (1999)
studied covering problems with varying radii. In their models the
coverage radius is the same for all facilities. They develop the effi-
cient frontier between the covering radius and the maximal cover
with that radius. We note that in our model, each facility will, in
general, have its own coverage radius.

The idea of selecting the attractiveness of a facility as a variable
in competitive location models was suggested in Drezner (1998),
Plastria and Carrizosa (2004), Fernandez et al. (2007) and Aboolian
et al. (2008). This is similar, in spirit, to our model in which the cost
of building a facility is a function of its coverage radius (attractive-
ness). However, the objective of our model and of the competitive
location models mentioned above are obviously quite different: in
our mode, it is to cover all demand point at the minimal total cost;
in competitive location models it is generally to select the most
profitable strategy, given certain actions of the competitor(s).

This paper is organized as follows. In Section 2 we develop the
model in the plane, establish certain structural results, and con-
struct three heuristic approaches. In Section 3 we report computa-
tional experience with these heuristic algorithms; two of the
heuristics appear to be quite efficient in obtaining accurate solu-
tions for problems with up to 10,000 demand nodes. The experi-
ments are performed on both, randomly generated and real-life
problem sets. In Section 4 we formulate the discrete model, and
develop an exact solution algorithm. In Section 5 we report compu-
tational experiments with a set of test problems on a network; the
algorithm appears to be capable of handling instances with up to
1000 demand points in a few seconds. We conclude in Section 6
and suggest topics for future research.

2. The planar Variable Radius Covering Problem

In the plane, each facility covers all the demand points within a
circle of a given radius. While the model could be developed with
any distance metric, we will use Euclidean distances, unless stated
otherwise.

We introduce the following notation:

Decision variables
p the unknown number of facilities
Xj ¼ ðxj; yjÞ be the unknown location of facility j for j ¼ 1; . . . ;p
X the vector {Xj} for j ¼ 1; . . . ;p
Yij a binary variable. Yij ¼ 1 if demand point i is assigned to

facility j, and Yij ¼ 0 otherwise

Y the matrix fYijg
rj the unknown coverage radius for facility j ¼ 1; . . . ; p
P ¼ fp;X; ðr1; . . . ; rpÞg the facility set describing the number, loca-

tions, and coverage radii of the facilities

Problem parameters
n the number of demand points
ðai; biÞ the location of demand point i for i ¼ 1; . . . ;n
diðXjÞ the Euclidean distance between demand point i and facility

j
F the non-negative fixed cost of locating one facility
/ðrÞ the variable cost of building a facility of radius r. By defini-

tion /ð0Þ ¼ 0

The total cost of building a facility with coverage radius r > 0 is as-
sumed to be F � Ifr > 0g þ /ðrÞ, where If�g is the indicator function
(for r ¼ 0 the total cost is zero and the fixed cost is not charged).
The variable cost function /ðrÞ is assumed to be non-decreasing in r.
Note that to minimize the overall cost of coverage, for a given variable
cost expenditure, it is always beneficial to construct a facility with the
largest possible coverage radius. Thus, even if a facility with the larger
radius has a lower cost than one with a smaller radius, the larger
radius option will always be chosen, thus the assumption above is
made without loss of generality. We do not assume continuity of
/ðrÞ as construction costs may jump in value at some specific radii.

An example of the cost function applicable in several settings is
/ðrÞ ¼ Cr2 for C > 0: when coverage is defined as a physical inten-
sity of the transmitter/receiver, such intensity is often inversely
proportional to the square of the distance. Note that if the total
number of facilities p is fixed, rather than being a decision variable,
we can take F ¼ 0 for the fixed cost component (this is the case in
many of the competitive location models mentioned in Section 1).
Several different forms of the coverage cost function have been
suggested by other authors. For example, in Drezner (1998) four
cost structures were suggested: a decreasing marginal return curve
/ðrÞ ¼ C

ffiffiffi
r
p

, a fixed marginal return curve /ðrÞ ¼ Cr, and two
increasing marginal return curves, /ðrÞ ¼ Cr2 for rapidly increas-
ing, and /ðrÞ ¼ Crð1þ arÞ for mildly increasing ða > 0Þ. In Plastria
and Carrizosa (2004) a list of possible radii each with a correspond-
ing cost is suggested. In Fernandez et al. (2007) it is required that
/ðrÞ is differentiable and the function may be different for different
demand points. They suggest /ðrÞ ¼ Crk for k P 1 or
/ðrÞ ¼ Cðekr � 1Þ for k > 0.

Since the variable cost is non-decreasing in the coverage radius,
the latter is uniquely determined by the assignment variables
through the following relationship:

rj ¼max
16i6n
fYijdiðXjÞg

(i.e., each facility must cover all demand assigned to it and the cov-
erage radius is determined by the furthest assigned demand point).
It follows that the cost corresponding to given values of the decision
variables X;Y and p is

FðX;Y ;pÞ ¼ pF þ
Xp

j¼1

/ max
16i6n
fYijdiðXjÞg

� �
;

and the problem can be stated as follows:

min
X;Y ;p

FðX;Y; pÞjYij 2 f0;1g; i ¼ 1; . . . ;n; j ¼ 1; . . . ; p;
Xp

j¼1

Yij ¼ 1

( )
:

ð1Þ

We note that the formulation (1) above cannot be directly solved by
standard mathematical programming solvers since the number of
decision variables depends on p, which is itself as a variable. For this
reason we develop several heuristic algorithms developed for
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