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a b s t r a c t

We study the complete set packing problem (CSPP) where the family of feasible subsets may include all
possible combinations of objects. This setting arises in applications such as combinatorial auctions (for
selecting optimal bids) and cooperative game theory (for finding optimal coalition structures). Although
the set packing problem has been well-studied in the literature, where exact and approximation algo-
rithms can solve very large instances with up to hundreds of objects and thousands of feasible subsets,
these methods are not extendable to the CSPP since the number of feasible subsets is exponentially large.
Formulating the CSPP as an MILP and solving it directly, using CPLEX for example, is impossible for prob-
lems with more than 20 objects. We propose a new mathematical formulation for the CSPP that directly
leads to an efficient algorithm for finding feasible set packings (upper bounds). We also propose a new
formulation for finding tighter lower bounds compared to LP relaxation and develop an efficient method
for solving the corresponding large-scale MILP. We test the algorithm with the winner determination
problem in spectrum auctions, the coalition structure generation problem in coalitional skill games,
and a number of other simulated problems that appear in the literature.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction and literature review

1.1. The Set Packing Problem (SPP)

The set packing problem and its variants (the set covering and
set partitioning problems) are among the most well-studied prob-
lems in combinatorial optimisation thanks to their wide ranges of
applications, their elegant mathematical formulation, and their
special structural properties. In the SPP, there are n objects which
can be packed into a number of subgroups among m predefined
feasible subsets labelled as S1; . . . ;Sm. Each subset Sj has a payoff
value of v j. The SPP aims to divide these n objects into non-over-
lapping subgroups such that their total payoff is maximised. The
SPP can be formulated as an MILP as follows:

SPPðA;vÞ :¼ max
x

v tx

s:t: Ax 6 e;
x 2 f0;1gm

;

ð1Þ

where x ¼ ðx1; x2; . . . ; xmÞ is a vector of binary decision variables
with xj indicating whether subset Sj is selected in the packing,
A 2 Rn�m is a matrix with element aij in row i and column j indicat-
ing whether subset Sj contains object i; v 2 Rm is a vector of pay-
offs, and e 2 Rn is a vector with all elements being equal to one.

The SPP has many applications such as for routing and schedul-
ing trains at intersections in railway operations Zwaneveld, Kroon,
and Van Hoesel (2001), for selecting winning bids in combinatorial
auctions (De Vries & Vohra, 2003), for surgical operations schedul-
ing Velásquez and Melo (2006), and for packets scheduling and
transmission in communication networks Emek et al. (2012). In
the context of combinatorial auctions, the winner determination
problem (WDP) is essentially a set packing problem. Sandholm
(2002) develops an algorithm that utilises the graphical represen-
tation of the coalition structure search space for solving the WDP.
Fujishima, Leyton-Brown, and Shoham (1999) develop an exact
algorithm, where caching and pruning are used to speed up the
search, and a heuristic algorithm for solving the WDP.

The tractability of the SPP depends on the structure of
the underlying IP formulation. Specifically, Müller (2006) and
Rothkopf, Pekeč, and Harstad (1998) summarise special cases
where the corresponding LP relaxation solutions satisfy the inte-
grality constraints and hence are also solutions of the SPP. These
are, however, very restrictive cases and it is generally very difficult
to solve the SPP. In fact, Karp (1972) shows that the SPP problem is
NP-complete while Sandholm (2002) shows the inapproximability
of the problem for general cases. Many methods, both exact and
approximation, have been proposed for solving the SPP. Padberg
(1973) and Cánovas, Landete, and Marın (2000) show different sets
of facets of the set packing polyhedron which can be used to
strengthen the LP relaxation solutions. Landete, Monge, and
Rodríguez-Chía (2012) present an alternative formulation for the
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SPP in a higher-dimensional space where a set of facets can be
identified.

Methods for solving the SPP often start with solving the corre-
sponding LP relaxation problem. De Vries and Vohra (2003) survey
different methods such as a constraint generation method for solv-
ing the LP relaxation problem and a sub-gradient method for solv-
ing the Lagrangian relaxation. The authors also provide interesting
insights on how the numerical algorithm is interpreted in the auc-
tioning process. These methods have actually been well-studied in
the context of the set covering problem (SCP), a variant of the SPP
where the objective is to minimise the total cost of covering all the
objects (see Beasley (1987) and Beasley & Jörnsten (1992) for
examples). Caprara, Toth, and Fischetti (2000) survey methods to
solve the SCP and compare their numerical performance on test
problems that appear in the literature.

Kochenberger, Glover, Alidaee, and Rego (2004) provide an uni-
fied framework for solving combinatorial optimisation problems
by transforming them into unconstrained quadratic binary optimi-
sation problems (UQBP). The authors then suggest the use of Tabu
search, a metaheuristic method that employs local search and a
‘tabu’-list to keep track of the searched space, for solving the UQBP.
Alidaee, Kochenberger, Lewis, Lewis, and Wang (2008) and Lewis,
Kochenberger, and Alidaee (2008) apply these methods to the set
packing and set partitioning problems and show that the algo-
rithms outperform CPLEX (on the original MILP formulations) on
many moderate-sized instances (with up to n ¼ 5000 objects and
m ¼ 15;000 feasible subsets for the SPP case).

There are also many other heuristic methods for solving the
SPP. In fact, Hoffman and Padberg (2001) state that ‘‘virtually every
heuristic approach for solving general integer programming prob-
lems has been applied to the set-covering, packing and partitioning
problems.’’ Delorme, Gandibleux, and Rodriguez (2004) develops
GRASP, a greedy randomised algorithm for solving the set packing
problem. Beasley and Chu (1996) develop a genetic algorithm for
solving the set covering problem and this method can be adapted
to solve the SPP.

1.2. The Complete Set Packing Problem (CSPP)

In this paper, we aim to solve the SPP for cases when m ¼ 2n, i.e.
any subset of objects can be grouped together in a packing, or
when m is relatively large compared to n. This setting arises in
applications such as combinatorial auctions where bidders submit
their bids in the form of value functions on the objects selected.
This bidding mechanism is favourable to auction designers and
to bidders because the information can be communicated in a
more compact way. Another application area is in multi-agent
systems, e.g. in a sensor network (Dang, Dash, Rogers, & Jennings,
2006), where players are grouped into coalitions to maximise their
total utility. As the number of possible subsets can grow exponen-
tially, existing methods (such as Beasley & Jörnsten, 1992; Caprara
et al., 2000; Fujishima et al., 1999; Sandholm, 2002) are not appli-
cable due to the large number of binary decision variables
involved.

Let N ¼ f1; . . . ;ng be the set of all objects and let
x ¼ ðx1; x2; . . . ; x2n Þ be a vector of binary variables with xj indicating
whether subset Sj is selected in the packing. The CSPP can be for-
mulated as an MILP as follows:

CSPPðN ;vÞ :¼max
x

v tx

s:t: AN x 6 e;

x 2 f0;1g2n

;

ð2Þ

where AN 2 Rn�2n
is a matrix with element aij in row i and column j

indicating whether subset Sj contains object i. For convenience in

notation, let aj ¼ ða1j; . . . ; anjÞt be a column vector of binary indica-
tors for each j 2 f1; . . . ;2ng. To avoid ambiguity in the ordering of
aj, we assign aj to the binary representation of ðj� 1Þ. Let us denote
v j � vðajÞ � vðSjÞ as the payoff of subset Sj. For n 6 15, problem
CSPPðN ;vÞ can be solved efficiently by CPLEX through a classical
branch and bound technique. However, the size of the MILP prob-
lem grows exponentially as the number of objects increases and it
is impossible for CPLEX to solve instances with more than 20 ob-
jects. We aim to develop an approximation method for solving this
MILP.

1.3. The winner determination problem in combinatorial auctions

Combinatorial auctions have been used in the procurement of
London bus routes Cantillon and Pesendorfer (2006), radio spec-
trum Cramton (1997), and truckload transportation Caplice and
Sheffi (2006), among many others. Combinatorial auctions arise
in situations where bidders are interested in buying bundles of ob-
jects that inherit some level of synergies among themselves. One of
the key problems in combinatorial auction is to find the best feasi-
ble combination of bids to maximise the total payoff. This problem
is equivalent to a complete set packing problem where objects are
those to be sold and the payoff of each subset is the maximum bid
that the bidders offer. In the combinatorial auction literature, solu-
tion approaches such as Fujishima et al. (1999) and Sandholm
(2002) often assume that the number of bids are relatively small
compared to the number of objects, i.e. a few hundreds of objects
and a few thousands of bids at most. However, in many real-life
situations such as in spectrum auctions, bidders might be inter-
ested in buying any subset of their predefined frequencies. In this
case, the bidders may express their interest through a compact
value function that involves their objects of interest and their spe-
cific synergy parameters (Cramton, Ausubel, McAfee, & McMillan,
1997; De Vries & Vohra, 2003). Therefore, the set of feasible bids
from all the bidders is an exponential function of the number of ob-
jects. We discuss about one such case in spectrum auctions in
subSection 3.1.

1.4. The optimal coalition structure generation problem in cooperative
game theory

Cooperative games with transferable utilities belong to a branch
of game theory where groups of players can form coalitions in or-
der to jointly achieve the groups’ objectives. Cooperative game the-
ory has many applications in economics and business (e.g. for
setting insurance premiums (Lemaire, 1991), and for setting inter-
change fees for ATM bank networks (Gow & Thomas, 1998)), in law
and political science (e.g. for computing voting power (Leech,
2003)), and in artificial intelligence (e.g. for coalition structure
formation in multi-agent systems (Chalkiadakis, Elkind, &
Wooldridge, 2011)), among many others. One of the key problems
in coalitional games is to find a coalition structure, i.e. to divide the
set of all players into disjoint subsets called coalitions, such that
the total payoff of these coalitions is maximised. This problem is
equivalent to a CSPP where players are viewed as objects,
coalitions are viewed as subgroups, and a coalition structure is
equivalent to a packing. Sandholm, Larson, Andersson, Shehory,
and Tohmé (1999) present a coalition structure graph to visualise
the set of all possible coalition structures. The authors then show
interesting results about the guaranteed bound on the best
coalition structure within certain parts of the graph. Since then,
new exact methods have been introduced to exploit the special
search space of the coalition structures. However, these existing
methods are only applicable for games with less than 30 players
Rahwan, Michalak, and Jennings (2012).
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