
Discrete Optimization

New approaches to nurse rostering benchmark instances

Edmund K. Burke a, Tim Curtois b,⇑
a Department of Computing and Mathematics, University of Stirling, Cottrell Building, Stirling FK9 4LA, UK
b School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

a r t i c l e i n f o

Article history:
Received 12 April 2012
Accepted 19 January 2014
Available online 30 January 2014

Keywords:
Staff scheduling
Nurse rostering
Branch and price
Ejection chain

a b s t r a c t

This paper presents the results of developing a branch and price algorithm and an ejection chain method
for nurse rostering problems. The approach is general enough to be able to apply it to a wide range of
benchmark nurse rostering instances. The majority of the instances are real world applications. They have
been collected from a variety of sources including industrial collaborators, other researchers and various
publications. The results of entering these algorithms in the 2010 International Nurse Rostering Compe-
tition are also presented and discussed. In addition, incorporated within both algorithms is a dynamic
programming method which we present. The algorithm contains a number of heuristics and other fea-
tures which make it very effective on the broad rostering model introduced.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Rostering problems are found in a wide range of workplaces and
industries including healthcare, manufacturing, transportation,
emergency services, call centres and many more. Using a computa-
tional search algorithm to address these problems results in cost
savings and better work schedules. As such, rostering problems in
various forms have received a large amount of research attention
over the years. This body of research grew steadily throughout
the 1960s, 1970s and 1980s and then accelerated in growth as more
powerful desktop personal computers became commonplace in
workplaces during the 1990s. As the computational and processing
power has grown so has the range and complexity of algorithms
that can be applied and the size and complexity of the instances
that can be solved. For an overview of rostering problems and
solution methodologies see (Ernst, Jiang, Krishnamoorthy, & Sier,
2004). A very large annotated bibliography of publications relating
to staff scheduling is also provided by Ernst, Jiang, Krishnamoorthy,
Owens, and Sier (2004). For a literature review specifically aimed at
the nurse rostering problem, see (Burke, De Causmaecker, Vanden
Berghe & Van Landeghem, 2004).

As these review papers show, many different approaches have
been used to solve nurse rostering problems. These include meta-
heuristics (Bellanti, Carello, Croce, & Tadei, 2004; Burke, Curtois,
Post, Qu, & Veltman, 2008; Burke, Curtois, Qu, et al., 2010; Ikegami
& Niwa, 2003; Moz & Pato, 2007), constraint programming

(Darmoni et al., 1995; Meyer auf’m Hofe, 2000; Weil, Heus, Francois,
& Poujade, 1995), mathematical programming (Azaiez & Al Sharif,
2005; Bard & Purnomo, 2005), other artificial intelligence tech-
niques (such as case-based reasoning (Beddoe & Petrovic, 2007)
and hybrid approaches (Burke, Li, & Qu, 2010; Qu & He, 2008). Each
method has strengths and weaknesses. For example, as will be
shown in this paper, a mathematical programming approach may
be able to solve some instances to optimality extremely quickly
but on other instances it may take infeasible amounts of time or
use too much memory. A metaheuristic, on the other hand, may
be able to find a good solution to difficult instances quite quickly
but may not be able to find the optimal solution to another instance
which an exact method can solve very quickly. An obvious solution
to this well-known phenomenon is to combine and hybridise
different techniques. This is one of the principles behind adaptive
approaches such as hyperheuristics.

The aim of this paper, however, is to provide new results (upper
bounds and lower bounds) for a large collection of diverse
rostering benchmark instances. This is the first occasion that a
branch and price method has been applied to these instances.
We also introduce the dynamic programming algorithm which is
at the core of the branch and price method and we present a gen-
eral rostering model which was used for all the instances tested.

Branch and price is a branch and bound method in which each
node of the branch and bound tree is a linear programming
relaxation which is solved using column generation. The column
generation consists of a restricted master problem and a pricing
problem. Solving the pricing problem provides new negative
reduced cost columns to add to the master problem. The pricing
problem can be considered as the problem of finding the optimal

http://dx.doi.org/10.1016/j.ejor.2014.01.039
0377-2217/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +44 (0)1158466521.
E-mail addresses: e.k.burke@stir.ac.uk (E.K. Burke), tim.curtois@nottingham.a-

c.uk (T. Curtois).

European Journal of Operational Research 237 (2014) 71–81

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.01.039&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.01.039
mailto:e.k.burke@stir.ac.uk
mailto:tim.curtois@nottingham.ac.uk
mailto:tim.curtois@nottingham.ac.uk
http://dx.doi.org/10.1016/j.ejor.2014.01.039
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


work schedule for an individual employee but with the addition of
dual costs, that is, additional (possibly negative) costs based on
which shift assignments are made or not made. In non-root nodes
of the branch and bound tree, there may also be additional branch-
ing constraints on certain assignments that must or must not be
made.

Although this is the first time that branch and price has been ap-
plied to these instances, it has previously been used on the nurse
rostering problem (Eveborn & Rönnqvist, 2004; Jaumard, Semet, &
Vovor, 1998; Maenhout & Vanhoucke, 2010; Mason & Smith,
1998). All these earlier applications have similar structure and the
same structure is adopted here. The master problem is modelled
as a set covering problem and solved using a linear programming
method such as the simplex method. The pricing problem is formu-
lated as a resource constrained shortest path problem and solved
using a dynamic programming approach. The branch and bound
tree is generally too large for a complete search and so heuristic,
constraint branching schemes are adopted in which branching is
performed on shift assignments in the roster. Although the dynamic
programming algorithms all use the same principles (dominance
pruning and bound pruning), the actual implementations are
dependent on the constraints and objectives present in the pricing
problem. For a recent overview of column generation see (Lubbecke
& Desrosiers, 2005) and for further reading on resource constrained
shortest path problems see (Irnich & Desaulniers, 2005).

In the next section, we discuss the challenge of modelling such a
wide variety of instances and how it was solved. In Section 3, we
introduce the benchmark instances and Section 4 presents the
branch and price algorithm. Section 5 contains the results of apply-
ing the algorithms to the benchmark instances. In Section 6, we
discuss the International Nurse Rostering Competition and finish
with conclusions in Section 7.

2. Modelling the problem

One of the most significant challenges in addressing a large di-
verse collection of instances is developing a model which can be
used for all the instances with their varying types of constraints
and objectives. In all the instances, there are common types of con-
straints/objectives which are relatively straightforward to model.
These include the cover constraints (ensuring that there is a correct
or a preferable number of employees assigned to each shift). How-
ever, the types of constraints that can be present in each employ-
ee’s work schedule can vary significantly from instance to instance.
This is due to the reality of each workplace having its own set of
rules and requirements defined by different employers, employees,
unions and national legislation. Furthermore, each employee often
has a different contract to reflect such features as full-time
employment, part-time employment and night shift working. To
provide a system which can incorporate these variations, we devel-
oped a general constraint based on pattern/string matching or
more specifically regular expressions. Regular expressions are a
powerful yet compact way of specifying patterns to be found or
matched. They are commonly used in Computer Science and so
we will not expand upon the subject here. Instead, we refer readers
to one of the many textbooks on the subject such as (Friedl, 2006).
Using a regular expression constraint in staff scheduling problems
appears to be a natural fit and this is not the first example of its
application to these type of problems (Côté, Gendron, Quimper, &
Rousseau, 2011; Demassey, Pesant, & Rousseau, 2006; Pesant,
2004). However, in order to fully include all the variations in the
instances we used, our approach is broader than some of this
earlier work. First though, we will illustrate by example how this
constraint can be applied in staff rostering problems. The basic idea

behind the constraint is to consider the employee’s work schedule
as the ‘search text’ containing the regular expressions to be
matched and the regular expressions to be matched are sequences
of shifts. After presenting the examples below, we also provide a
figure to illustrate how the constraint works in practice (Figs. 1–3).
The figures show a short section of a single employee’s schedule.
The coloured squares labelled E, D and N represent early, day and
night shifts respectively. The highlighted days show where the
regular expression in question has been matched.

Example 1. If a night shift (N) can only be followed by another
night shift or a day off then it could be modelled by the constraint
‘‘maximum zero matches of the pattern ‘N followed by any shift
other than N’’’. Note that we use the expression ‘‘maximum zero’’
here as another way of saying this pattern must not appear at all.
We use this expression instead though because all the matches are
expressed as either a maximum or minimum number of matches
in order to provide more modelling power (Fig. 1).

Example 2. If an employee must not work more than five consec-
utive shifts then it could be modelled by the constraint ‘‘maximum
zero matches of the pattern ‘Any, Any, Any, Any, Any, Any’’’ where
Any is any shift (that is, not a day off) (Fig. 2).

Example 3. If an employee must have a minimum of two consec-
utive night shifts then the constraint would be ‘‘maximum zero
matches of the pattern ‘anything but N, followed by N, followed
by anything but N’’’ (Fig. 3).

As can be seen, the constraint is based on the idea of string/pat-
tern matching. However, it is more like a regular expression and
extends some of the previous work because we also allow:

j Grouping: Matching one of a group of shifts at a point in the
sequence.

j Negation: Matching anything but a specific shift or group of
shifts at a point in the sequence.

j Alternation: Matching multiple patterns.
j Quantifiers: The pattern(s) must appear a minimum or maxi-

mum number of times.
j Restricting the search text to a specific region of the work

schedule.
j Only matching a pattern if it starts on a particular day in the

work schedule.

This enables us to model some of the more complicated con-
straints such as those relating to weekend work or constraints that
only apply between certain dates in the planning period. Using this
general regular expression constraint, we can model many of the
constraints found in staff scheduling problems. An example list is
provided below.

j Minimum/maximum consecutive work days.
j Minimum/maximum consecutive non-work days.
j Day on/off requests.
j Shift on/off requests.
j Minimum/maximum number of shifts (optionally within a spe-

cific time frame).
j Minimum/maximum number of shifts of a specific type (option-

ally within a specific time frame).
j Minimum/maximum number of consecutive shifts of a specific

type (optionally within a specific time frame).
j Days off after a series of shifts of a specific type.
j Shift rotations (which shifts can follow which shifts).
j Minimum/maximum shift rotations.

72 E.K. Burke, T. Curtois / European Journal of Operational Research 237 (2014) 71–81



Download English Version:

https://daneshyari.com/en/article/480971

Download Persian Version:

https://daneshyari.com/article/480971

Daneshyari.com

https://daneshyari.com/en/article/480971
https://daneshyari.com/article/480971
https://daneshyari.com

