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a b s t r a c t

In this article, we derive a solution for a linear stochastic model on a complex time domain. In this type of
models, the time domain can be any collection of points along the real number line, so these models are
suitable for problems where events do not occur at evenly-spaced time intervals. We present examples
based on well-known results from economics and finance to illustrate how our model generalizes and
extends conventional dynamic models.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many business disciplines, especially in economics and fi-
nance, researchers are interested in modeling dynamics of vari-
ables whose current values are influenced by their own expected
future values. Perhaps the best known example of such a model
is the Cagan (1956) model of hyperinflation. In that model, the cur-
rent price level depends on how economic agents form expecta-
tions about the future price level. In finance, the current price of
an asset can be modeled as a function of a future price of that
asset. Generally, such models are expressed as

yt ¼ aE½ytþ1jIt � þ czt ; ð1:1Þ

where variable yt is a linear function of its own expected future va-
lue, conditional on It , the information set available at time t, and an
exogenous variable zt , which can be either a deterministic or a ran-
dom variable.

This type of model served as a building block for many seminal
works. Lucas (1973) employed this type of model to study output-
inflation tradeoff. Sargent and Wallace (1975) used it to study the
effectiveness of various monetary policies. Sargent (1977) and Tay-
lor (1979) studied econometric methods for estimating a dynamic
model with expectations. These works and many others shaped
modern macroeconomics.

Theoretical and empirical aspects of this model continue to re-
ceive attention in the literature. Blanchard and Kahn (1980), Broze,

Janssen, and Szafarz (1984) and Gourieroux, Laffont, and Monfort
(1982) analyzed solutions to general versions of this model which
can include expectations of multiple future values and lags of y.
Christiano (1987) discussed econometric issues pertaining to this
type of model.

In this paper, we generalize the model in (1.1) by allowing the
time period between the current period and the period for which
expectation is formed to be of any arbitrary length. A related work
by Tucci (2004) takes a step in this direction by restating Cagan’s
model using m-period future expectations:

yt ¼ aEt ½ytþm� þ zt; ð1:2Þ

where m > 1, so y is a function of not just a one-period-ahead
expectation but an expectation at some arbitrary point in the
future.

The model we propose in this paper is

yt ¼ aEt yr
t

� �
þ f ðt; ztÞ: ð1:3Þ

The principal difference between the models in (1.1) and (1.2) is in
how they approach timing of events. The time domain of (1.1) is a
set of integers, so events in this model occur at evenly spaced time
intervals. The time domain of (1.3) can be any collection of points
on Rþ, the set of positive real numbers, and yt and yr

t are values
of y on two consecutive points on the time domain. Therefore, in
(1.3), yt can be a function of its expected value at any arbitrary point
in the future, and the interval between point t and the next point on
the time domain can vary over time. The models in (1.1) and (1.2)
are special cases of the model in (1.3). Thus, the model in (1.3) is
a generalization of existing models in the literature.
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In the next section, we present the theory behind the dynamic
model used in this paper and derive the solution for the model in
(1.3). Then we discuss two examples to draw parallels with exist-
ing models and to show how the model proposed in this paper con-
tributes to the literature on dynamic modeling.

2. Dynamic equations on complex discrete time domains

Let T ¼ f0 ¼ t0; t1; t2; t3; . . .g be the set of positive real numbers
such that ti < tj for i < j. Then we define rðtiÞ ¼ tiþ1 and
lðtiÞ ¼ rðtiÞ � ti for ti 2 T. With these properties, the time domain
T can be considered as a complex discrete time domain.

Let f be a real valued function defined on T. Then the D-deriva-
tive of f is defined as

f DðtÞ ¼ f ðrðtÞÞ � f ðtÞ
lðtÞ ;

where t 2 T. The D-integral of f is defined as

Z T

0
f ðsÞDs ¼

X
s2½0;TÞ\T

lðsÞf ðsÞ;

where 0; T 2 T.
The exponential function on T is denoted as

epðt; t0Þ ¼
Y

s2½t0 ;tÞ\T
ð1þ lðsÞpðsÞÞ;

where 1þ pðtÞlðtÞ– 0 for all t 2 T.
If T :¼ Z and p is a constant so that 1þ plðtÞ– 0 for all t 2 Z,

then epðt; t0Þ ¼ ð1þ pÞt�t0 . The circle minus of pðtÞ; �pðtÞ, is defined

to be � pðtÞ
1þlðtÞpðtÞ for all t 2 Tj. If 1þ plðtÞ > 0, then epðt; t0Þ > 0 for

all t 2 T (for details, see Merrell, Ruger, & Severs, 2004).
With the help of these definitions we derive the general solu-

tion for the model (1.3) where f may be a linear or a nonlinear func-
tion. We then illustrate how our model and its solution generalize
the existing results in the literature (Broze, Gourieroux, & Szafarz,
1985; Broze et al., 1984; Broze & Szafarz, 1984; Gourieroux et al.,
1982; Pesaran, 1981). In the statement of the next theorem, we
use the notation given in the paper (Merrell et al., 2004), and we
drop the variable t of lðtÞ, which appears in the subscripts of
e 1�a

alðtÞ
and e� 1�a

alðtÞ
.

Theorem 2.1. Let T be a complex discrete time domain. Then the
following yt solves the equation in (1.3)

yt ¼ e1�a
al
ðt;0ÞMðtÞ � e1�a

al
ðt;0Þ

Z t

0
e�1�a

al
ðs;0Þ 1

lðsÞ f ðs; zsÞDs; ð2:1Þ

where t 2 T and MðtÞ is an arbitrary martingale on T, i.e. it satisfies the
martingale property

Et½MrðtÞ� ¼ MðtÞ:

Proof. We start by shifting yt one step forward. Hence, we have

yr
t ¼ e1�a

al
ðrðtÞ;0ÞMrðtÞ � e1�a

al
ðrðtÞ; 0Þ

Z rðtÞ

0
e�1�a

al
ðs; 0Þ 1

lðsÞ f ðs; zsÞDs:

Since er
1�a
al
ðt;0Þ ¼ 1

a e1�a
al
ðt;0Þ, it follows that

yr
t ¼

1
a

e1�a
al
ðt;0ÞMrðtÞ � 1

a
e1�a

al
ðt;0Þ

Z rðtÞ

0
e�1�a

al
ðs;0Þ

� 1
lðsÞ f ðs; zsÞDs: ð2:2Þ

Using properties of the integral, we write the above expression (2.2)
as

yr
t ¼

1
a

e1�a
al
ðt;0ÞMrðtÞ�1

a
e1�a

al
ðt;0Þ

�
Z t

0
e�1�a

al
ðs;0Þ 1

lðsÞf ðs;zsÞDsþ
Z rðtÞ

t
e�1�a

al
ðs;0Þ 1

lðsÞf ðs;zsÞDs
� �

:

Because
R rðtÞ

t e�1�a
al
ðs;0Þ 1

lðsÞ f ðs; zsÞDs ¼ e�1�a
al
ðt;0Þf ðt; ztÞ, we obtain

yr
t ¼

1
a

e1�a
al
ðt;0ÞMrðtÞ

� 1
a

e1�a
al
ðt;0Þ

Z t

0
e�1�a

al
ðs;0Þ 1

lðsÞ f ðs; zsÞDsþ e�1�a
al
ðt;0Þf ðt; ztÞ

� �
:

ð2:3Þ

Next, multiplying each side of the above Eq. (2.3) by a and then
applying the conditional expectation to each side, we obtain

aEtyr
t ¼ e1�a

al
ðt;0ÞEtM

rðtÞ

� e1�a
al
ðt;0Þ

Z t

0
e�1�a

al
ðs;0Þ 1

lðsÞ f ðs; zsÞDsþ e�1�a
al
ðt;0Þf ðt; ztÞ

� �
:

ð2:4Þ

As a last step, we subtract aEtyr
t in (2.4) from yt in (2.1) side by side

and we obtain

yt � aEtyr
t ¼ e1�a

al
ðt;0Þ Mt � EtM

r
t

� �
þ e1�a

al
ðt;0Þe�1�a

al
ðt;0Þf ðt; ztÞ:

Because e1�a
al
ðt;0Þe�1�a

al
ðt;0Þ ¼ 1, we have

yt � aEtyr
t ¼ f ðt; ztÞ:

This completes the proof. �

Corollary 2.1. If T ¼ Z, then the Eq. (2.1) becomes

yt ¼
1
at

Mt �
1
at

Xt�1

s¼0

asf ðs; zsÞ; ð2:5Þ

where Mt is a discrete time martingale.

Remark 2.1. If f � 0, Eq. (1.3) is reduced to

yt ¼ aEt yr
t

� �
;

and the solution for y is

yt ¼
1
at

Mt:

Remark 2.2. Broze et al. (1985) show that the general solution to
the model in (1.3) on T ¼ Z is

yt ¼
1
a

yt�1 þ e0
t �

1
a

f ðt � 1; zt�1Þ; ð2:6Þ

where e0
t is an arbitrary martingale difference.

Solution of the Eq. (2.6) coincides with the solution (2.1) for
T ¼ Z. To see this, first consider the case where f � 0. Then the
Eq. (2.6) becomes

yt ¼
1
a

yt�1 þ e0
t : ð2:7Þ

By shifting the above Eq. (2.7) one unit forward and multiplying
each side of the equation by atþ1 we have

atþ1ytþ1 � atyt ¼ atþ1e0
tþ1: ð2:8Þ

Next, we sum each side of Eq. (2.8) from 0 to t � 1 and now we have
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