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a b s t r a c t

We consider congestion games on networks with nonatomic users and user-specific costs. We are inter-
ested in the uniqueness property defined by Milchtaich (2005) as the uniqueness of equilibrium flows for
all assignments of strictly increasing cost functions. He settled the case with two-terminal networks. As a
corollary of his result, it is possible to prove that some other networks have the uniqueness property as
well by adding common fictitious origin and destination. In the present work, we find a necessary con-
dition for networks with several origin–destination pairs to have the uniqueness property in terms of
excluded minors or subgraphs. As a key result, we characterize completely bidirectional rings for which
the uniqueness property holds: it holds precisely for nine networks and those obtained from them by ele-
mentary operations. For other bidirectional rings, we exhibit affine cost functions yielding to two distinct
equilibrium flows. Related results are also proven. For instance, we characterize networks having the
uniqueness property for any choice of origin–destination pairs.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many areas, different users share a common network to tra-
vel or to exchange information or goods. Each user wishes to select
a path connecting a certain origin to a certain destination. How-
ever, the selection of paths in the network by the users induces
congestion on the arcs, leading to an increase of the costs. Taking
into account the choices of the other users, each user looks for a
path of minimum cost. We expect therefore to reach a Nash equi-
librium: each user makes the best reply to the actions chosen by
the other users.

This kind of games is studied since the 1950s, with the seminal
works by Wardrop (1952) and Beckmann, McGuire, and Winsten
(1956). Their practical interest is high since the phenomena im-
plied by the strategic interactions of users on a network are often
nonintuitive and may lead to an important loss in efficiency. The
Braess paradox (Braess, 1968) – adding an arc may deteriorate all
travel times – is the classical example illustrating such a nonintu-
itive loss and it has been observed in concrete situations, for exam-
ple in New York Kolata (1990). Koutsoupias and Papadimitriou
(1999) initiated a precise quantitative study of this loss, which lead
soon after to the notion of ‘‘Price of Anarchy’’ that is the cost of the
worst equilibrium divided by the optimal cost, see (Roughgarden &

Tardos, 2002) among many other references. Some recent re-
searches proposed also ways to control this loss, see Bauso, Giarré,
and Pesenti (2009) and Knight and Harper (2013) for instance.

When the users are assumed to be nonatomic – the effect of a
single user is negligible – equilibrium is known to exist (Milchta-
ich, 2000). Moreover, when the users are affected equally by the
congestion on the arcs, the costs supported by the users are the
same in all equilibria (Aashtiani & Magnanti, 1981). In the present
paper, we are interested in the case when the users may be af-
fected differently by the congestion. In such a case, examples are
known for which these costs are not unique. Various conditions
have been found that ensure nevertheless uniqueness. For in-
stance, if the user’s cost functions attached to the arcs are contin-
uous, strictly increasing, and identical up to additive constants,
then we have uniqueness of the equilibrium flows, and thus of
the equilibrium costs (Altman & Kameda, 2001). In 2005, contin-
uing a work initiated by Milchtaich (2000) and Konishi (2004) for
networks with parallel routes, Milchtaich (2005) found a topolog-
ical characterization of two-terminal networks for which, given
any assignment of strictly increasing and continuous cost func-
tions, the flows are the same in all equilibria. Such networks are
said to enjoy the uniqueness property. Similar results with atomic
users have been obtained by Orda, Rom, and Shimkin (1993) and
Richman and Shimkin (2007).

The purpose of this paper is to find similar characterizations for
networks with more than two terminals. We are able to character-
ize completely the ring networks having the uniqueness property,
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whatever the number of terminals is. Studying equilibria on rings
can be seen as the decentralized counterpart of works on the opti-
mization of multiflows on rings, like the one proposed by Myung,
Kim, and Tcha (1997). Our main result for ring networks is that
the uniqueness property holds precisely for nine networks and
those obtained from them by elementary operations. For other
rings, we exhibit affine cost functions yielding to two distinct equi-
librium flows. It allows to describe infinite families of graphs for
which the uniqueness property does not hold. For instance, there
is a family of ring networks such that every network with a minor
in this family does not have the uniqueness property.

2. Preliminaries on graphs

An undirected graph is a pair G ¼ ðV ; EÞ where V is a finite set of
vertices and E is a family of unordered pairs of vertices called edges.
A directed graph, or digraph for short, is a pair D ¼ ðV ;AÞ where V is
a finite set of vertices and A is a family of ordered pairs of vertices
called arcs. A mixed graph is a graph having edges and arcs. More
formally, it is a triple M ¼ ðV ; E;AÞwhere V is a finite set of vertices,
E is a family of unordered pairs of vertices (edges) and A is a family
of ordered pairs of vertices (arcs). Given an undirected graph
G ¼ ðV ; EÞ, we define the directed version of G as the digraph
D ¼ ðV ;AÞ obtained by replacing each (undirected) edge in E by
two (directed) arcs, one in each direction. An arc of G is understood
as an arc of its directed version. In these graphs, loops – edges or
arcs having identical endpoints – are not allowed, but pairs of ver-
tices occurring more than once – parallel edges or parallel arcs – are
allowed.

A walk in a directed graph D is a sequence

P ¼ ðv0; a1;v1; . . . ; ak;vkÞ

where k P 0;v0;v1; . . . ;vk 2 V ; a1; . . . ; ak 2 A, and ai ¼ ðv i�1;v iÞ for
i ¼ 1; . . . ; k. If all v i are distinct, the walk is called a path. If no con-
fusion may arise, we identify sometimes a path P with the set of its
vertices or with the set of its arcs, allowing to use the notation v 2 P
(resp. a 2 P) if a vertex v (resp. an arc a) occurs in P.

An undirected graph G0 ¼ ðV 0; E0Þ is a subgraph of an undirected
graph G ¼ ðV ; EÞ if V 0 # V and E0 # E. An undirected graph G0 is a
minor of an undirected graph G if G0 is obtained by contracting
edges (possibly none) of a subgraph of G. Contracting an edge uv
means deleting it and identifying both endpoints u and v. Two
undirected graphs are homeomorphic if they arise from the same
undirected graph by subdivision of edges, where a subdivision of
an edge uv consists in introducing a new vertex w and in replacing
the edge uv by two new edges uw and wv.

The same notions hold for directed graphs and for mixed
graphs.

Finally, let G ¼ ðV ; EÞ be an undirected graph, and H ¼ ðT; LÞ be a
directed graph with T # V , then Gþ H denotes the mixed graph
ðV ; E; LÞ.

3. Model

Similarly as in the multiflow theory (see for instance Schrijver
(2003) or Korte & Vygen (2000)), we are given a supply graph
G ¼ ðV ; EÞ and a demand digraph H ¼ ðT; LÞ with T # V . The graph
G models the (transportation) network. The arcs of H model the ori-
gin–destination pairs, also called in the sequel the OD-pairs. H is
therefore assumed to be simple, i.e. contains no loops and no mul-
tiple edges. A route is an ðo; dÞ-path of the directed version of G
with ðo; dÞ 2 L and is called an ðo; dÞ-route. The set of all routes
(resp. ðo; dÞ-routes) is denoted by R (resp. Rðo;dÞ).

The population of users is modeled as a bounded real interval I
endowed with the Lebesgue measure k, the population measure.

The set I is partitioned into measurable subsets Iðo;dÞ with
ðo; dÞ 2 L, modeling the users wishing to select an ðo; dÞ-route.

For a given pair of supply graph and demand digraph, and a gi-
ven partition of users, we define a strategy profile as a measurable
mapping r : I!R such that rðiÞ 2 Rðo;dÞ for all ðo; dÞ 2 L and
i 2 Iðo;dÞ. For each arc a 2 A of the directed version of G, the measure
of the set of all users i such that a is in rðiÞ is the flow on a in r and
is denoted fa:

fa ¼ kfi 2 I : a 2 rðiÞg:

The cost of each arc a 2 A for each user i 2 I is given by a non-
negative, continuous, and strictly increasing cost function
ci

a : Rþ ! Rþ, such that i # ci
aðxÞ is measurable for all a 2 A and

x 2 Rþ. When the flow on a is fa, the cost for user i of traversing
a is ci

aðfaÞ. For user i, the cost of a route r is defined as the sum of
the costs of the arcs contained in r. A class is a set of users having
the same cost functions on all arcs, but not necessarily sharing the
same OD-pair.

The game we are interested in is defined by the supply graph G,
the demand digraph H, the population user set I with its partition,
and the cost functions ci

a for a 2 A and i 2 I. If we forget the graph
structure, we get a game for which we use the terminology
nonatomic congestion game with user-specific cost functions, as in
Milchtaich (1996).

A strategy profile is a (pure) Nash equilibrium if each route is
only chosen by users for whom it is a minimal-cost route. In other
words, a strategy profile r is a Nash equilibrium if for each pair
ðo; dÞ 2 L and each user i 2 Iðo;dÞ we haveX
a2rðiÞ

ci
aðfaÞ ¼ min

r2Rðo;dÞ

X
a2r

ci
aðfaÞ:

Under the conditions stated above on the cost functions, a Nash
equilibrium is always known to exist. It can be proven similarly as
Theorem 3.1 in Milchtaich (2000), or as noted by Milchtaich
(2005), it can be deduced from more general results (Theorem 1
of Schmeidler (1970) or Theorems 1 and 2 of Rath (1970)). How-
ever, such an equilibrium is not necessarily unique, and even the
equilibrium flows are not necessarily unique.

4. Results

Milchtaich (2005) raised the question whether it is possible to
characterize networks having the uniqueness property, i.e. networks
for which flows at equilibrium are unique. A pair ðG;HÞ defined as
in Section 3 is said to have the uniqueness property if, for any par-
tition of I into measurable subsets Iðo;dÞ with ðo; dÞ 2 L, and for any
assignment of (strictly increasing) cost functions, the flow on each
arc is the same in all equilibria.

Milchtaich found a positive answer for the two-terminal net-
works, i.e. when jLj ¼ 1. More precisely, he gave a (polynomial)
characterization of a family of two-terminal undirected graphs
such that, for the directed versions of this family and for any
assignment of (strictly increasing) cost functions, the flow on each
arc is the same in all equilibria. For two-terminal undirected
graphs outside this family, he gave explicit cost functions for which
equilibria with different flows on some arcs exist.

The objective of this paper is to address the uniqueness prop-
erty for networks having more than two terminals. We settle the
case of ring networks and find a necessary condition for general
networks to have the uniqueness property in terms of excluded
minors or subgraphs.

In a ring network, each user has exactly two possible strategies.
See Fig. 1 for an illustration of this kind of supply graph G, demand
digraph H, and mixed graph Gþ H. We prove the following theo-
rem in Section 5.
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