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a b s t r a c t

We develop a flexible discrete-time hedging methodology that minimizes the expected value of any
desired penalty function of the hedging error within a general regime-switching framework. A numerical
algorithm based on backward recursion allows for the sequential construction of an optimal hedging
strategy. Numerical experiments comparing this and other methodologies show a relative expected
penalty reduction ranging between 0:9% and 12:6% with respect to the best benchmark.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction and literature review

For a derivatives trading and risk management activity to be
sustainable, hedging is paramount. In practice, portfolio rebalanc-
ing is performed in discrete time and the market is typically
incomplete, implying that most contingent claims cannot be repli-
cated exactly. Thus, to implement a hedging policy, the challenge is
twofold: a model must be specified and hedging strategy objec-
tives must be set.

From a modeling perspective, this article adopts a regime-
switching environment. One widely studied class of regime-
switching models views log-returns as a mixture of Gaussian
variables. These models, introduced in finance by Hamilton
(1989), have been shown to improve the statistical fit and forecasts
of financial returns. They reproduce widely documented empirical
properties such as heteroskedasticity, autocorrelation and fat tails.
In this framework, the option pricing problem must deal with
incomplete markets and requires the specification of a risk pre-
mium. Among significant contributions, Bollen (1998) presents a
lattice algorithm to compute the value of European and American

options. Hardy (2001) finds a closed-form formula for the price of
European options. The continuous-time version of the Gaussian
mixture model is studied by Mamon and Rodrigo (2005) who find
an explicit value for European options by solving a partial differen-
tial equation. Elliott, Chan, and Siu (2005) price derivatives by
means of the Esscher transform under the same continuous-time
model. Buffington and Elliott (2002) derive an approximate for-
mula for American option prices. Beyond the Gaussian mixture
models, extensions address GARCH effects (Duan, Popova, & Ritch-
ken, 2002) and jumps (Lee, 2009a), for example.

Several authors study the problem of hedging an underlying asset
with its futures under regime-switching frameworks. Alizadeh and
Nomikos (2004) and Alizadeh, Nomikos, and Pouliasis (2008) base
their hedging strategy on minimal variance hedge ratios. Lee, Yoder,
Mittelhammer, and McCluskey (2006), Lee and Yoder (2007), and Lee
(2009a, 2009b) extend the dynamics of the underlying asset in Ali-
zadeh and Nomikos (2004) to incorporate a time-varying correlation
between the spot and futures returns, GARCH-type feedback from
returns on the volatilty, jumps and copulas for the dependence
between futures and spot returns. Lien (2012) provides conditions
under which minimal variance ratios taking into account the exis-
tence of regimes overperform their unconditional counterparts.

Option hedging under regime-switching models has recently
raised interest in the literature. Rémillard and Rubenthaler
(2009) adapt the work of Schweizer (1995) to a regime-switching
framework and identify the hedging strategy that minimizes the
squared error of hedging in both discrete-time and continuous-
time for European options. The implementation of this methodology
is presented in Rémillard, Hocquard, and Papageorgiou (2010).
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Rémillard, Hocquard, Langlois, and Papageorgiou (2012) extend the
hedging procedure to American options.

Another strand of literature discusses self-financing hedging
policies1 under general model assumptions. A widely known meth-
odology is delta hedging. It consists in building a portfolio whose
value variations mimick those of the hedged contingent claim when
small changes in the underlying asset’s value occur. In continuous-
time complete markets, delta hedging is the cornerstone of any hedg-
ing strategy since it allows for perfect replication. Based on the first
derivative of the option price with respect to the underlying asset
price, it requires a full characterization of the risk-neutral measure.
Many authors discuss the implementation of delta hedging in dis-
crete-time and/or incomplete markets (Duan, 1995, among others).
It should be stressed, however, that delta hedging is subject to model
misspecification. Nevertheless, it stands as a relevant benchmark
when it comes to assessing the performance of a hedging strategy.

Another approach is super-replication (e.g. El Karoui & Quenez,
1995; Karatzas, 1997). It identifies the cheapest trading strategy
whose terminal wealth is at least equal to the derivative’s payoff.
Since the option buyer alone carries the price of the hedging risk,
the initial capital required is often unacceptably large. Eberlein
and Jacod (1997) show that, under many models, the initial capital
required to super-replicate a call option is the price of the under-
lying asset itself.

An alternative to super-replication is Global Hedging Risk Mini-
mization (GHRM), which consists in identifying trading strategies
that replicate the derivative’s payoff as closely as possible, or alter-
natively, minimize the risk associated with terminal hedging short-
falls. Xu (2006) proposes to minimize general risk measures applied
to hedging errors. Several authors choose more specific risk mea-
sures: quantiles of the hedging shortfall (Cvitanić & Spivak, 1999;
Föllmer & Leukert, 1999), expected hedging shortfall (Cvitanić &
Karatzas, 1999), expected powers of the hedging shortfall (Pham,
2000), Tail Value-at-Risk (Sekine, 2004), expected squared hedging
error (Cont, Tankov, & Voltchkova, 2007; Motoczyński, 2000; Rémil-
lard & Rubenthaler, 2009; Schweizer, 1995) and the expectation of
general loss functions (Föllmer & Leukert, 2000). Theoretical exis-
tence of optimal hedging strategies under those risk measures
and their characterization are studied in a general context. How-
ever, explicit solutions exist only for some particular cases of mar-
ket setups and risk measures. The implementation of the preceding
methodologies in the case of incomplete markets is often not
straightforward, and tractable algorithms computing the optimal
strategies have yet to be identified. The presence of regimes adds
an additional layer of difficulty in applying those methods.

This paper’s contributions are twofold. First, on a theoretical
level, we develop a discrete-time hedging methodology with the
GHRM objective that minimizes the expected value of any desired
penalty function of the hedging error within a general regime-
switching framework (possibly including time-inhomogeneous
regime shifts). This methodology is highly flexible and generalizes
the quadratic hedging approach. It incorporates a large class of
penalty functions encompassing usual risk measures such as
Value-at-Risk and expected shortfall. The proposed framework
can accommodate portfolio restrictions such as no short-selling.
Portfolios can be rebalanced more frequently than the regime-
switch timeframe. Second, from an implementation perspective,
a numerical algorithm based on backward recursion allows for
the sequential construction of an optimal hedging strategy.
Numerical experiments challenge our model with existing meth-
odologies. The relative expected penalty reduction obtained with
this paper’s optimal hedging approach, in comparison with the

best benchmark, ranges between 0.9% and 12.6% in the different
cases exposed.

This paper is organized as follows. In Section 2, the market
model and the hedging problem are described. In Section 3, the
hedging problem is solved. Section 4 presents a numerical scheme
to compute the solution to the hedging problem. Section 5 presents
the market model used for the simulations and provides numerical
results. Section 6 concludes the paper.

2. Market specifications and hedging

2.1. Description of the market

Transactions take place in a discrete-time, arbitrage-free finan-
cial market. Denote by Dt the constant time elapsing between two
consecutive observations. Two types of assets are traded. The risk-
free asset is a position in the money market account with a nomi-
nal amount normalized to one monetary unit. The time – n price of
the risk-free asset is

Sð1Þn ¼ expðrnDtÞ; n 2 f0;1;2; . . .g

where r is the annualized risk-free rate. The price of the risky asset,
starting at Sð2Þ0 , evolves according to

Sð2Þn ¼ Sð2Þ0 expðYnÞ;

where Yn is the risky asset’s cumulative return over the time inter-

val 0;n½ �. S
!

n denotes the column vector Sð1Þn ; Sð2Þn

� �>
and S
!

0:n stands

for the whole price process up to time n.
The financial market is subject to various regimes that affect the

dynamics of the risky asset’s price. These regimes are represented
by an integer-valued process hnf gN

n¼0 taking values in
H ¼ 1;2; . . . ;Hf g where hn is the regime prevailing during time
interval �n;nþ 1�. The joint process ðY;hÞ has the Markov property2

with respect to the filtration F nf gN
n¼0 satisfying the usual conditions,

where

F n ¼ rð S
!

0:n;h0:nÞ ¼ rðY0:n; h0:nÞ;

meaning that the distribution of ðYnþ1; hnþ1Þ conditional on informa-
tion F n is entirely determined by Yn and hn.3 This assumption is con-
sistent with Hamilton (1989) and Duan et al. (2002), among others.
Transition probabilities of the regime process h are denoted by

PðnÞi;j ðyÞ ¼ Pðhnþ1 ¼ jjhn ¼ i;Yn ¼ yÞ i; j 2 H:

Because regimes h are not observable, a coarser filtration
Gnf gN

n¼0 modeling the information available to investors is
required, that is, Gn ¼ rðY0:nÞ.

2.2. The hedging problem

A market participant (referred to as the ‘‘hedger’’) wishes to
replicate (or ‘‘hedge’’) the payoff /ðSð2ÞN Þ of a European contingent
claim written on the risky asset and maturing at time N, where
/ð�Þ is some positive Borel function / : ½0;1Þ ! R. Alternatively,
the payoff can be written as a function of the risky asset return

/ðSð2ÞN Þ ¼ ~/ðYNÞ;

for some function ~/ð�Þ.

1 By contrast, local risk-minimization, which considers hedging strategies that are
not self-financing, selects one that minimizes a measure of the costs related to non-
initial investments in the portfolio (Schweizer, 1991).

2 A stochastic process fXng has the Markov property with respect to filtration F if
8n; x;

PðXnþ1 6 xjF nÞ ¼ PðXnþ1 6 xjXnÞ:

3 Equivalently, the process ð S
!
;hÞ has the Markov property with respect to filtration

F .
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