
Discrete Optimization

Lin–Kernighan heuristic adaptations for the generalized traveling salesman problem

D. Karapetyan ⇑, G. Gutin
Royal Holloway London University, Egham, Surrey, TW20 0EX, United Kingdom

a r t i c l e i n f o

Article history:
Received 26 March 2010
Accepted 11 August 2010
Available online 17 August 2010

Keywords:
Heuristics
Lin–Kernighan
Generalized traveling salesman problem
Combinatorial optimization

a b s t r a c t

The Lin–Kernighan heuristic is known to be one of the most successful heuristics for the Traveling Sales-
man Problem (TSP). It has also proven its efficiency in application to some other problems.

In this paper, we discuss possible adaptations of TSP heuristics for the generalized traveling salesman
problem (GTSP) and focus on the case of the Lin–Kernighan algorithm. At first, we provide an easy-to-
understand description of the original Lin–Kernighan heuristic. Then we propose several adaptations,
both trivial and complicated. Finally, we conduct a fair competition between all the variations of the
Lin–Kernighan adaptation and some other GTSP heuristics.

It appears that our adaptation of the Lin–Kernighan algorithm for the GTSP reproduces the success of
the original heuristic. Different variations of our adaptation outperform all other heuristics in a wide
range of trade-offs between solution quality and running time, making Lin–Kernighan the state-of-the-
art GTSP local search.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

One of the most successful heuristic algorithms for the famous
Traveling Salesman Problem (TSP) known so far is the Lin–
Kernighan heuristic (Lin and Kernighan, 1973). It was proposed
almost 40 years ago but even nowadays it is the state-of-the-art
TSP local search (Johnson and McGeoch, 2002).

In this paper, we attempt to reproduce the success of the origi-
nal TSP Lin–Kernighan heuristic for the generalized traveling sales-
man problem (GTSP), which is an important extension of the TSP.
In the TSP, we are given a set V of n vertices and weights
w(x ? y) of moving from a vertex x 2 V to a vertex y 2 V. A feasible
solution, or a tour, is a cycle visiting every vertex in V exactly once.
In the GTSP, we are given a set V of n vertices, weights w(x ? y) of
moving from x 2 V to y 2 V and a partition of V into m nonempty
clusters C1,C2, . . . ,Cm such that Ci \ Cj = for each i 6¼ j and

S
iCi = V.

A feasible solution, or a tour, is a cycle visiting exactly one vertex
in every cluster. The objective of both TSP and GTSP is to find the
shortest tour.

If the weight matrix is symmetric, i.e., w(x ? y) = w(y ? x) for
any x,y 2 V, the problem is called symmetric. Otherwise it is an
asymmetric GTSP. In what follows, the number of vertices in cluster
Ci is denoted as jCij, the size of the largest cluster is s, and Cluster(x)
is the cluster containing a vertex x. The weight function w can

be used for edges, paths w(x1 ? x2 ? � � �? xk) = w(x1 ? x2) +
w(x2 ? x3) + � � � + w(xk�1 ? xk), and cycles.

Since Lin–Kernighan is designed for the symmetric problem, we
do not consider the asymmetric GTSP in this research. However,
some of the algorithms proposed in this paper are naturally suited
for both symmetric and asymmetric cases.

Observe that the TSP is a special case of the GTSP when jCij = 1
for each i and, hence, the GTSP is NP-hard. The GTSP has a host of
applications in warehouse order picking with multiple stock loca-
tions, sequencing computer files, postal routing, airport selection
and routing for courier planes and some others (see, e.g., Fischetti
et al., 1995, 1997; Laporte et al., 1996; Noon and Bean, 1991) and
references therein.

A lot of attention was paid in the literature to solving the GTSP.
Several researchers (Ben-Arieh et al., 2003; Laporte and Semet,
1999; Noon and Bean, 1993) proposed transformations of the GTSP
into the TSP. At first glance, the idea to transform a little-studied
problem into a well-known one seems to be natural; however, this
approach has a very limited application. On the one hand, it re-
quires exact solutions of the obtained TSP instances because even
a near-optimal solution of such TSP may correspond to an infeasi-
ble GTSP solution. On the other hand, the produced TSP instances
have quite an unusual structure which is difficult for the existing
solvers. A more efficient way to solve the GTSP exactly is a
branch-and-bound algorithm designed by Fischetti et al. (1997).
This algorithm was able to solve instances with up to 89 clusters.
Two approximation algorithms were proposed in the literature,
but both of them are unsuitable for the general case of the prob-
lem, and the guarantied solution quality is unreasonably low for

0377-2217/$ - see front matter Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2010.08.011

⇑ Corresponding author.
E-mail addresses: daniel.karapetyan@gmail.com (D. Karapetyan), gutin@cs.rhul.

ac.uk (G. Gutin).

European Journal of Operational Research 208 (2011) 221–232

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2010.08.011
mailto:daniel.karapetyan@gmail.com
mailto:gutin@cs.rhul. ac.uk
mailto:gutin@cs.rhul. ac.uk
http://dx.doi.org/10.1016/j.ejor.2010.08.011
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

real-world applications (see Bontoux et al., 2010) and references
therein.

In order to obtain good (i.e., not necessarily exact) solutions for
larger GTSP instances, one should use the heuristic approach. Sev-
eral construction heuristics and local searches were discussed in
Bontoux et al. (2010), Gutin and Karapetyan (2010), Hu and Raidl
(2008), Renaud and Boctor (1998), Snyder and Daskin (2006) and
some others. A number of metaheuristics were proposed by
Bontoux et al. (2010), Gutin and Karapetyan (2010), Gutin et al.
(2008), Huang et al. (2005), Pintea et al. (2007), Silberholz and
Golden (2007), Snyder and Daskin (2006), Tasgetiren et al.
(2007), Yang et al. (2008).

In this paper, we thoroughly discuss possible adaptations of a
TSP heuristic for the GTSP and focus on the Lin–Kernighan algo-
rithm. The idea of the Lin–Kernighan algorithm was already suc-
cessfully applied to the Multidimensional Assignment Problem
(Balas and Saltzman, 1991; Karapetyan and Gutin, in press). A
straightforward adaptation for the GTSP was proposed by Hu and
Raidl (2008); their algorithm constructs a set of TSP instances
and solves all of them with the TSP Lin–Kernighan heuristic.
Bontoux et al. (2010) apply the TSP Lin–Kernighan heuristic to
the TSP tours induced by the GTSP tours. It will be shown in
Section 3 that both of these approaches are relatively weak.

The Lin–Kernighan heuristic is a sophisticated algorithm ad-
justed specifically for the TSP. The explanation provided by Lin
and Kernighan (1973) is full of details which complicate under-
standing of the main idea of the method. We start our paper from
a clear explanation of a simplified TSP Lin–Kernighan heuristic
(Section 2) and then propose several adaptations of the heuristic
for the GTSP (Section 3). In Section 4, we provide results of a thor-
ough experimental evaluation of all the proposed Lin–Kernighan
adaptations and discuss the success of our approach in comparison
to other GTSP heuristics. In Section 5, we discuss the outcomes of
the conducted research and select the state-of-the-art GTSP local
searches.

2. The TSP Lin–Kernighan heuristic

In this section, we describe the TSP Lin–Kernighan heuristic
(LKtsp). It is a simplified version of the original algorithm. Note that
Lin and Kernighan (1973) was published almost 40 years ago,
when modest computer resources, obviously, influenced the algo-
rithm design, hiding the main idea behind the technical details.
Also note that, back then, the ‘goto’ operator was widely used; this
affects the original algorithm description. In contrast, our interpre-
tation of the algorithm is easy to understand and implement.

LKtsp is a generalization of the k-opt local search. The k-opt
neighborhood Nk-opt(T) includes all the TSP tours which can be ob-
tained by removing k edges from the original tour T and adding k
different edges such that the resulting tour is feasible. Observe that

exploring the whole Nk-opt(T) takes O(nk) operations and, thus, with
a few exceptions, only 2-opt and rarely 3-opt are used in practice
(Johnson and McGeoch, 2002; Rego and Glover, 2006).

Similarly to k-opt, LKtsp tries to remove and insert edges in the
tour but it explores only some parts of the k-opt neighborhood that
deem to be the most promising. Consider removing an edge from a
tour; this produces a path. Rearrange this path to minimize its
weight. To close up the tour we only need to add one edge. Since
we did not consider this edge during the path optimization, it is
likely that its weight is neither minimized nor maximized. Hence,
the weight of the whole tour is probably reduced together with the
weight of the path. Here is a general scheme of LKtsp:

1. Let T be the original tour.
2. For every edge e ? b 2 T do the following:

(a) Let P = b ? � � �? e be the path obtained from T by removing
the edge e ? b.

(b) Rearrange P to minimize its weight. Every time an improve-
ment is found during this optimization, try to close up the
path P. If it leads to a tour shorter than T, save this tour as
T and start the whole procedure again.

(c) If no tour improvement was found, continue to the next
edge (Step 2).

In order to reduce the weight of the path, a local search is used
as follows. On every move, it tries to break up the path into two
parts, invert one of these parts, and then rejoin them (see Fig. 1).
In particular, the algorithm tries every edge x ? y and selects the
one which maximizes the gain g = w(x ? y) � w(e ? x). If the max-
imum g is positive, the corresponding move is an improvement and
the local search is applied again to the improved path.

Observe that this algorithm tries only the best improvement
and skips the other ones. A natural enhancement of the heuristic
would be to use a backtracking mechanism to try all the improve-
ments. However, this would slow down the algorithm too much. A
compromise is to use the backtracking only for the first a moves.
This approach is implemented in a recursive function Improve-
Path(P,depth,R), see Algorithm 1.

Algorithm 1. ImprovePath(P,depth,R) recursive algorithm
(LKtsp version). The function either terminates after an
improved tour is found or finishes normally with no profit

Require: The path P = b ? � � �? e, recursion depth depth and a
set of restricted vertices R.
if depth < a then

for every edge x ? y 2 P such that x =2 R do
Calculate g = w(x ? y) � w(e ? x) (see Fig. 1b).
if g > 0 then

if the tour b ? � � �? x ? e ? � � �? y ? b is an
improvement over the original one then

Accept the produced tour and terminate.
else

ImprovePath(b ? � � �? x ? e ? � � �? y, depth + 1,
R [{x}).

else
Find the edge x ? y which maximizes
g = w(x ? y) � w(e ? x).
if g > 0 then

if the tour b ? � � �? x ? e ? � � �? y ? b is an
improvement over the original one then

Accept the produced tour and terminate.
else

return ImprovePath(b ? � � �? x ? e ? � � �? y,
depth + 1, R [{x}).Fig. 1. An example of a local search move for a path improvement. The weight of

the path is reduced by w(x ? y) � w(x ? e).

222 D. Karapetyan, G. Gutin / European Journal of Operational Research 208 (2011) 221–232

Download English Version:

https://daneshyari.com/en/article/481029

Download Persian Version:

https://daneshyari.com/article/481029

Daneshyari.com

https://daneshyari.com/en/article/481029
https://daneshyari.com/article/481029
https://daneshyari.com

