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a b s t r a c t

In this paper we consider the Cumulative Capacitated Vehicle Routing Problem (CCVRP), which is a var-
iation of the well-known Capacitated Vehicle Routing Problem (CVRP). In this problem, the traditional
objective of minimizing total distance or time traveled by the vehicles is replaced by minimizing the
sum of arrival times at the customers. We propose a branch-and-cut-and-price algorithm for obtaining
optimal solutions to the problem. To the best of our knowledge, this is the first published exact algorithm
for the CCVRP. We present computational results based on a set of standard CVRP benchmarks and inves-
tigate the effect of modifying the number of vehicles available.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Capacitated Vehicle Routing Problem (CVRP) is one of the
most well-studied problems within the area of transportation
optimization. Recently it has, however, become clear to the
research community that the CVRP does not fully capture the
essence of real life transportation problems. This has for instance
led to the introduction of so-called Rich Vehicle Routing Problems
(Hartl, Hasle, & Janssens, 2006), a family of problems which cap-
ture the complications of real life problems far better than the
classical CVRP.

One aspect of rich vehicle routing problems is the consideration
of objective functions that differ from the traditional one of mini-
mizing the total distance or time traveled by the vehicles. These
include minimizing the number of vehicles used and minimizing
the length of the longest tour. The latter is known as a Min–Max
objective and is studied by Golden, Laporte, and Taillard (1997)
and Applegate, Cook, Dash, and Rohe (2002), among others. Other
studies consider simultaneous optimization of multiple objectives
(Bowerman, Hall, & Calamai, 1995; Corberán, Fernández, Laguna, &
Martí, 2002).

In this paper we consider the variation of the CVRP where the
objective is to minimize the sum of arrival times at the customers,
for a fixed starting time of each route. This problem is known as the
Cumulative Capacitated Vehicle Routing Problem (CCVRP). We
note that minimizing the sum of arrival times is equivalent to
minimizing the average arrival time.

The CCVRP occurs in several applications. It is relevant in distri-
bution systems where it is desirable to provide early service
measured across the whole set of customers. In school bus routing,
for example, minimizing average arrival time is one fairness mea-
sure which may have priority over minimizing total distance trav-
eled. A more detailed discussion of performance criteria in the
context of school bus routing is provided in Bowerman et al.
(1995). Furthermore, when natural disasters strike, it is essential
that aid arrives quickly in order to save lives and provide emer-
gency supplies, so the traditional goal of cost minimization must
step aside for fast response and fairness. Several performance mea-
sures can be used in relation to providing aid to multiple locations
quickly, and minimizing the latest arrival time or minimizing the
average arrival time are among the commonly used. The effect
on the quality of one objective function when optimizing another
is investigated by Campbell, Vandenbussche, and Hermann
(2008) in the context of relief effort.

The outline of our paper is as follows. We first consider related
literature in Section 2. Our mathematical model formulation is pre-
sented in Section 3, our algorithm is described in Section 4, and
computational results are given in Section 5. Finally, we present
the conclusion and perspectives in Section 6.

2. Related literature

The CCVRP has recently been studied from a heuristic point of
view in several papers. These studies include Iterated Local Search
(Chen, Dong, & Niu, 2012), Adaptive Large Neighborhood Search
(Ribeiro & Laporte, 2012), Memetic algorithms (Ngueveu, Prins, &
Wolfler Calvo, 2010), and a two-phase heuristic (Ke & Feng,
2013). In Ke and Feng (2013), the performance of three algorithms
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(Ke & Feng, 2013; Ngueveu et al., 2010; Ribeiro & Laporte, 2012)
were compared. Based on that comparison, the two-phase algo-
rithm (Ke & Feng, 2013) and the Adaptive Large Neighborhood
Search (Ribeiro & Laporte, 2012) each provide the best known solu-
tion for about half of the test instances.

Kara, Kara, and Yetis� (2008) consider a variation of the CCVRP,
where the objective function to be minimized is not the sum of arrival
times, but rather the sum of arrival times multiplied by the demand of
the node. They refer to this problem, which is an extension of the
CCVRP, as CumVRP and study the relationship to various other prob-
lems. Flow based formulations of the problem for both the delivery
and the collection case are presented and based on these, the authors
are able to solve instances with up to 34 locations.

The uncapacitated version of the CCVRP is known as the k-trav-
eling repairman problem, where k is the number of vehicles avail-
able. For this problem, Fakcharoenphol, Harrelson, and Rao (2007)
present an 8.497-approximation algorithm which is partly based
on a result due to Chaudhuri, Godfrey, Rao, and Talwar (2003).
Jothi and Raghavachari (2007) study an extension of the k-travel-
ing repairman problem in which there is a repair time in addition
to the travel time. They present a ð32 bþ 1

2Þ-approximation
algorithm for this problem, where b is the approximation factor
obtainable for the k-traveling repairman problem.

The related single vehicle problem, referred to as the Minimum
Latency Problem (MLP), has attracted many researchers. It is well
studied both from an approximation and an exact point of view.
The current best approximation algorithm for the MLP is due to
Chaudhuri et al. (2003) and achieves an approximation factor of
3.59. Several exact approaches have been proposed for the MLP,
most of which are based on dynamic programming, branch-and-
bound, or a combination of the two (Wu, Huang, & Zhan, 2004).
We refer the reader to Silva, Subramanian, Vidal, and Ochi (2012)
for an overview of research on the MLP.

Dewilde, Cattrysse, Coene, Spieksma, and Vansteenwegen
(2013) study a single vehicle problem, where a profit is obtained
the first time a location is visited and the visit of each location is
optional. The objective is to maximize the sum of profits minus
the sum of arrival times. This problem arises as the subproblem
if the CCVRP is solved using column generation approaches, except
from the exclusion of capacity constraints. The authors present a
tabu seach algorithm for this problem.

Recently, some interesting problem variations, where the MLP
is combined with another problem, have been studied. We point
out a couple of such papers. Levin and Penn (2008) present a
16.31-approximation algorithm for a combination of MLP and
machine scheduling where n jobs are to be processed on a single
machine located at a plant and subsequently are to be delivered
to n individual customer locations by a single vehicle. Processing
times are given for the jobs and travel times are given among the
customers and between the plant and the customers. The goal is
to determine a production sequence for the jobs at the machine
and determine the routing of the vehicle such that the sum of
the delivery times of the jobs at the customers are minimized.
We emphasize that it is fully allowed for the vehicle to pick up jobs
from the plant several times. Li, Vairaktarakis, and Lee (2005) con-
sider a variation of the same problem where several jobs can be
associated with the same customer and the vehicle may or may
not be capacity constrained.

Chakrabarty and Swamy (2011) study a combination of MLP
and facility location. Given a central depot, a set of customers,
and a set of possible facilities, the problem is to determine which
facilities to activate. The objective function to be minimized is
combined of three terms: a fixed cost for each activated facility,
a cost of assigning each customer to a facility (this is not a routing
cost), and a minimum latency cost of a tour connecting the depot
to the facilities.

3. Model formulation

The CCVRP can be defined as follows. Let G = (V, E) be a com-
plete undirected graph, with V = {0, . . ., n}. Vertex 0 represents a
depot, whereas each of the vertices in Vc = {1, . . ., n} represents a
customer. The symmetric travel time between vertices i and j is de-
noted by tij. A number K of identical vehicles, each of capacity Q > 0,
is available. Each customer i has an integer demand qi, with
0 < qi 6 Q. Each customer must be served by a single vehicle and
no vehicle can serve a set of customers whose demand exceeds
its capacity. Each vehicle used must leave the depot at time 0, visit
one or more customers, and return to the depot. The objective is to
minimize the sum of all n arrival times at the customers.

In the following subsections we first describe two individual
formulations (a Set Partitioning and a Vehicle Flow formulation,
respectively) which are then combined into the formulation that
we solve by our algorithm.

3.1. A Set Partitioning formulation

We define a feasible elementary route as a path (0, z1, . . ., zk, 0),
where z1, . . ., zk are k different customers whose total demand does
not exceed the vehicle capacity Q. As such, any feasible elementary
route starts and ends at the depot, and we use the convention that
the starting time at the depot is zero for any route.

For any feasible elementary route r, we define its cost cr as the
sum of arrival times for all customers on the route. Further, let R

denote the set of all feasible elementary routes. Moreover, we let
air be a parameter of value 1 if route r visits customer i and 0 other-
wise, and we let kr be a variable of value 1 if route r is chosen and 0
otherwise. This leads to the following Set Partitioning formulation:

ðSPPÞ
min :

X
r2R

crkr ð1Þ

s:t: :
X
r2R

airkr ¼ 1 8i 2 Vc ð2Þ
X
r2R

kr ¼ K ð3Þ

kr 2 f0;1g 8r 2 R ð4Þ

The objective (1) minimizes the total cost of all routes. Constraints
(2) ensure that each customer is contained in exactly one route, the
constraint (3) specifies the required number of routes K, and (4) are
the binary constraints on the decision variables.

This model can be solved by branch-and-bound (BB), where the
Linear Programming (LP) relaxation in each subproblem is solved
by column generation (CG). This would result in a branch-and-
price (BP) algorithm where the CG subproblem is the problem of
determining a feasible elementary route of minimum reduced cost,
for a given set of dual prices associated with (2) and (3).

In this paper, however, we will develop a different formulation
involving the same set of route variables, and apply branch-and-
cut-and-price (BCP) on this formulation.

3.2. A vehicle flow formulation

While any feasible solution to the CCVRP can be described in
terms of k-variables as in (2)–(4), we also have the alternative of
representing a solution as in the two-index solution space used
in vehicle flow formulations of the CVRP (Laporte, 2009; Lysgaard,
Letchford, & Eglese, 2004), which we reproduce here with the
objective function intentionally omitted. Let xij denote the number
of times a vehicle travels directly between vertices i and j. More-
over, for any S � V, let d(S) denote the set of edges with exactly
one end-vertex in S, where we for simplicity write d(i) instead of
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