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a b s t r a c t

Batching customer orders in a warehouse can result in considerable savings in order pickers’ travel dis-
tances. Many picker-to-parts warehouses have precedence constraints in picking a customer order. In
this paper a joint order-batching and picker routing method is introduced to solve this combined prece-
dence-constrained routing and order-batching problem. It consists of two sub-algorithms: an optimal
A⁄-algorithm for the routing; and a simulated annealing algorithm for the batching which estimates
the savings gained from batching more than two customer orders to avoid unnecessary routing. For
batches of three customer orders, the introduced algorithm produces results with an error of less than
1.2% compared to the optimal solution. It also compares well to other heuristics from literature. A data
set from a large Finnish order picking warehouse is rerouted and rebatched resulting in savings of over
5000 kilometres or 16% in travel distance in 3 months compared to the current method.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Order picking is the single most important process in distribu-
tion centers. It is also the most laborious one, responsible for a sub-
stantial part of the distribution center’s total costs, with estimates
as high as 55% (Drury, 1988) to 65% (Coyle, Bardi, & Langley, 1996)
mentioned in the literature. Although advances in technology have
made the picking process more efficient and the actual percentage
of the total costs is most probably less than the figures above indi-
cate, it is still substantial. Travel time is the largest component of
the order picking time, with a contribution of up to 50% (Tompkins,
White, Bozer, & Tanchoco, 2003). Much research has been devoted
to methods reducing order pickers’ travel times, including modify-
ing warehouse layout, using a different storage policy, batching or-
ders, and routing pickers. In this paper, we focus on combined
picker routing and order batching.

Our study is inspired by a picker-to-parts order picking process
in a large retail warehouse in Finland. In this warehouse, at most
three customer orders (or orders for short) can be batched in a single
pick tour, each possibly for a different customer (i.e., a store) and a
different delivery location within the warehouse. Each customer
order has to be picked in a fixed sequence, due to family grouping
in the company’s stores. The problem of batching orders and rout-

ing pickers while respecting precedence constraints of products is
common, particularly in retail organisations, but such restrictions
may also play a role in other warehouses (Dekker, De Koster, Rood-
bergen, & Van Kalleveen, 2004; Chan & Kumar, 2008). Precedence
constraints may vary in nature. They may be due to weight restric-
tions (heavy products at the bottom of the roll container), fragility
(light at the top), shape and size (big boxes at the bottom), stack-
ability, but also preferred unloading sequence due to family group-
ing on the customer’s shelves. Although order batching and picker
routing have received quite some attention in the literature, the
combined problem of order batching and picker routing while
respecting the precedence constraints of the products (and in our
problem, including potential multiple drop-off points in a route)
has not received much attention.

Batching orders and routing pickers while respecting prece-
dence constraints is complex. Order batching is NP-hard for
batches of size three or higher (Gademann & Van de Velde,
2005). Routing pickers while respecting precedence constraints
has complexity of O(N2(P + 1)N) (Psaraftis, 1980a), where N is the
number of customer orders in the batch and P is the maximum
number of items in an order. Finding exact solutions for large or-
ders and large batches becomes rapidly intractable. Our reference
company has 2000 orders per day and up to 50 products per order,
which have to be batched in batches of three orders. As the prob-
lem has to be solved multiple times per day and because of the
problem’s complexity, exact computation of the order batching is
not feasible and thus a heuristic method is used.
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We solve the problem using a generic solution method. For the
batching, we use a simulated annealing-based combinatorial
search algorithm based on maximising total savings in travel dis-
tance. Batching aims to reduce total travel distance by combining
multiple similar orders (which have to visit overlapping parts of
the warehouse). Selecting the orders to be batched is based on
comparing all pairs of orders and estimating the savings due to
combining a larger number of orders. This reduces computation
times substantially, while the error compared to optimal combina-
tions is within 1.2%. The routing can be solved using an A⁄-type
shortest path algorithm. The method is exact and general, not con-
strained by the particular warehouse layout.

Our contribution is a structured approach for the joint order
batching and picker routing problem in warehouses with any lay-
out or any strict sequence constraint. The method is fast, and com-
pares well to optimal solutions and heuristics from literature. In
our reference case, travel distance savings of nearly 16% could be
achieved.

2. Literature review

A classic algorithm for order picking tour construction is the ex-
act and polynomial time algorithm first presented in Ratliff and
Rosenthal (1983) and extended in De Koster and Van der Poort
(1998) to include multiple drop-offs. The algorithm presented in
Ratliff and Rosenthal (1983) is further extended in Roodbergen
and De Koster (2001b) to include a middle aisle. This extended ver-
sion assumes a parallel-aisle warehouse with a maximum of three
cross-aisles (see Fig. 1) and does not account for precedence
constraints.

Next to optimal routes, heuristics are often used. In S-shape
routing (Randolph, 1993), also known as traversal routing, an order
picker travels the whole aisle if he or she needs to pick an item in
the aisle visited. An exception is made for the last aisle if the num-
ber of aisles is odd. With largest-gap routing (Randolph, 1993),
each aisle, except for the first and the last one visited, is exited
on the entry side. The first and the last visited aisles are travelled
completely. A heuristic combining S-shape and largest-gap routing
is presented in Roodbergen and De Koster (2001a).

Theys, Braysy, Dullaert, and Raa (2010) consider the applicabil-
ity of the Lin–Kernighan–Helsgaun (LKH) TSP heuristic (Helsgaun,
2000) to routing order pickers. They compare LKH with several
routing heuristics and obtain savings of up to 47% in travel dis-
tance. Helsgaun (2000) finds optimal solutions with the LKH heu-
ristic for all previously solved TSP instances available at that
time, including a 13,509-city problem, which was the largest prob-
lem instance solved to optimality at the time.

A dynamic programming algorithm for solving the single-vehi-
cle many-to-many immediate request dial-a-ride problem (multi-
ple customer destinations, each with a possibly unique drop-off
location), which is similar to our routing, is introduced in Psaraftis
(1980b, 1983). The time complexity of Psaraftis’ algorithm is

O(N23N) (where n is the total number of customers), and it solves
problems for up to ten customers.

Kubo and Kasugai (1991) introduce the Precedence-Constrained
Travelling Salesman Problem (PCTSP) and a branch-and-bound
method for finding exact solutions for cases of up to 49 locations
with acceptable computation times. The precedence-constrained
path construction problem can be modelled as a case of the
Sequential Ordering Problem (SOP) (Escudero, 1988). The SOP
can be formulated as an Asymmetric Travelling Salesman Problem
(ATSP) with precedence constraints. In the SOP, paths usually have
a start and a finish position that differ from each other, while ATSP
paths finish where they started. In the general ATSP case, each of
the non-visited cities can be the next target with each iteration,
but in the SOP, the set of the next possible cities is limited as de-
fined by a directed graph formed from the problem.

A method for batching orders is introduced in Gademann and
Van de Velde (2005). The order-batching problem is modelled as
a set partitioning problem. A column generation algorithm is used
to solve the linear programming relaxation. They rely on the poly-
nomial time algorithm presented in Ratliff and Rosenthal (1983) to
calculate the route length. They find that the maximum batch size
has the largest impact on the solution time.

The savings algorithm by Clarke and Wright (1964), C&W(i), as
well as an extension of it, C&W(ii), are used for batching orders in
De Koster, Van der Poort, and Wolters (1999). They are compared
to seed algorithms using two routing strategies: S-shape and larg-
est-gap. Seed algorithms consist of two distinct steps: seed order
selection and order addition. A single order is selected as the seed
order based on criteria, e.g., the highest number of items, longest
travel time or the farthest item. Additions can be done using differ-
ent rules such as adding the order that minimises the sum of the
distances of every item of the seed and the closest item in the or-
der, or minimising the additional number of aisles to be travelled.
The authors find that seed algorithms work best with S-shape rout-
ing and large pick device capacity, while savings algorithms work
best with Largest-gap and small pick capacity. C&W(ii) consistently
outperforms C&W(i), but is computationally more expensive.

Hsieh and Huang (2011) introduce two batch construction heu-
ristics based on data clustering method: K-means Batching (KMB)
based on K-means algorithm (MacQueen, 1967); and Self-Organi-
sation Map (SOMB) based on the Self-Organising Map (Kohonen,
1990). KMB functions in a manner similar to traditional seed algo-
rithms, while SOMB uses the Self-Organising Map to choose
batches for routing.

Albareda-Sambola, Alonso-Ayuso, Molina, and De Blas (2009)
use a Variable Neighbourhood Search (VNS) algorithm to batch or-
ders. It uses six different local exchange schemes incorporated into
three different search neighbourhoods of varying size to find good
batches. Within each neighbourhood, all moves belonging to that
neighbourghood are tried, and the one which results in the largest
savings is chosen. The larger neighbourhoods are searched as
needed – if a current one fails to produce a better solution, the next
(larger) neighbourhood is explored for a better solution until no
improvement can be made. VNS is compared to the C&W(i),
C&W(ii) and seed algorithms and it consistently outperforms them.
The authors find that the best performing algorithm from literature
is C&W(ii), which is on average 2% worse than VNS. Solution qual-
ity comes with added computational complexity – when compared
to C&W(ii) a much larger part of the combinatorial batch space ex-
plored. For the most complex instance run (250 orders), VNS took
almost six times as much time to reach its solution. For routing
batches, the authors use the computationally inexpensive S-shape,
largest-gap and combined heuristics.

Henn and Wäscher (2012) introduce an attribute based hill-
climber (ABHC) (Whittley & Smith, 2004) for the order-batching
problem. ABHC uses a set of attributes to guide the search out of

Fig. 1. Top view of the warehouse with seven drop-off locations indicated at the top
(marked 1–7). The empty bin depot is denoted with D. The 57 aisles are
unidirectional, while the three cross-aisles are bidirectional. The aisle-to-aisle
distance is 5.5 meters the slot-to-slot distance is 3.7 meters, which is also the width
of the central cross-aisle.
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