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a b s t r a c t

Given an unconstrained quadratic optimization problem in the following form:

ðQPÞminfxtQx j x 2 f�1;1gng;

with Q 2 Rn�n , we present different methods for computing bounds on its optimal objective value. Some of
the lower bounds introduced are shown to generally improve over the one given by a classical semidefinite
relaxation. We report on theoretical results on these new bounds and provide preliminary computational
experiments on small instances of the maximum cut problem illustrating their performance.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider a quadratic function q : Rn ! R given by: qðxÞ ¼ xtQx,
where Q denotes a n� n rational matrix.

An unconstrained (�1,1)-quadratic optimization problem can
be expressed as follows:

ðQPÞZ� ¼minfqðxÞjx 2 f�1;1gng;

where f�1;1gn denotes the set of n-dimensional vectors with en-
tries either equal to 1 or �1. Without loss of generality we assume
that the matrix Q is symmetric.

Problem ðQPÞ is a classical combinatorial optimization problem
with many applications, e.g. in statistical physics and circuit design
(Barahona et al., 1988; Grötschel et al., 1989; Pinter, 1984). It is
well-known that any (0,1)-quadratic problem expressed as:
minfxtAxþ ctxjx 2 f0;1gng; A 2 Rn�n; c 2 Rn, can be formulated
in the form of problem ðQPÞ (with dimension nþ 1 instead of n)
and conversely (Hammer, 1965; De Simone, 1990).

Problem ðQPÞ is known to be NP-hard in general (Karp, 1972).
Some polynomially solvable cases have been identified from
among the following (Allemand et al., 2001; Ben-Ameur and Neto,
2008b; Çela et al., 2006).

Proposition 1.1. For a fixed integer p, if the matrix Q (given by its
nonzero eigenvalues and associated eigenvectors) has rank at most p
and negative diagonal entries only, then problem ðQPÞ can be solved in
polynomial time.

Note also the following extension of the last Proposition given
in Ben-Ameur and Neto (2008b).

Proposition 1.2. For fixed integers p P 2 and q P 0, if the matrix Q
(given by its nonzero eigenvalues and associated eigenvectors) has
rank at most p and at most q positive diagonal entries, then problem
ðQPÞ can be solved in polynomial time.

Different methods for computing bounds for problems such as
ðQPÞ have been proposed in the literature. An early reference is
Hammer and Rubin (1970), in which the authors proposed a meth-
od convexifying the objective function by making use of the small-
est eigenvalue of the matrix Q. This approach has then been
generalized and improved by many people (see e.g. Delorme and
Poljak, 1993a,b; Poljak and Rendl, 1995; Billionnet and Elloumi,
2007) leading to bounds equivalent to the ones obtained by a semi-
definite formulation presented in Goemans and Williamson
(1995). More recently further improvements over the latter have
been introduced, e.g. in Malik et al. (2006) and Ben-Ameur and
Neto (2008a).

Let us introduce some notation. The eigenvalues of the matrix Q
will be noted k1ðQÞ 6 k2ðQÞ 6 . . . 6 knðQÞ (or more simply k1 6 k2

6 . . . 6 kn when clear from the context) and corresponding unit
(in Euclidean norm) and pairwise orthogonal eigenvectors: v1;

. . . ;vn. The jth entry of vector v i is noted v ij. Given some set of vec-
tors a1; . . . ; aq 2 Rn; q 2 N, we note Linða1; . . . ; aqÞ the subspace
spanned by these vectors. Given some vector y 2 f�1;1gn

;

distðy; Linðv1; . . . ; vpÞÞ stands for the Euclidean distance between
the vector y and Linðv1; . . . ;vpÞ, i.e. distðy; Linðv1; . . . ; vpÞÞ ¼
ky� ypk2 where yp stands for the orthogonal projection of y onto
Linðv1; . . . ;vpÞ and k � k2 represents the Euclidean norm. Given
some index j 2 f1; . . . ;ng; dj will denote the distance between the
set f�1;1gn and the subspace that is spanned by the eigenvectors
v1; . . . ;v j, i.e. minfdistðy; Linðv1; . . . ;v jÞÞjy 2 f�1;1gng. Notice that
dj depends on a particular spectral decomposition of the matrix
Q when there is an eigenvalue with multiplicity greater than
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one: considering different orders for the eigenvectors associated
with the same eigenvalue generally leads to different values of
dj. Analogously, �dj will denote the distance between the set
f�1;1gn and Linðv j; . . . ;vnÞ.

By using the property x2
i ¼ 1; 8i 2 f1; . . . ;ng for any vector

x 2 f�1;1gn, we notice that the set of optimal solutions of the
problem ðQPÞ remains unchanged if diagonal entries of the matrix
Q are modified. More precisely, let u 2 Rn;DiagðuÞ 2 Rn�n stand for
the matrix with diagonal u and all the other entries set equal to
zero, and denote with ðQPÞu the (�1,1)-quadratic problem:
Z ¼minfxtðQ þ DiagðuÞÞxjx 2 f�1;1gng. Then, trivially we have:
Z� ¼ Z �

Pn
i¼1ui. However altering the diagonal entries of the ma-

trix Q generally changes its spectrum, i.e. eigenvalues and eigen-
vectors. The bounds that we introduce rely on the spectrum of
the matrix Q. And applying them to the matrix Q þ DiagðuÞ instead
of Q, we can still derive bounds that are valid for the original prob-
lem but they depend on the vector u that is used.

To simplify the presentation we consider Q (rather than
Q þ DiagðuÞ) as an input matrix for which we compute bounds
for the corresponding problem ðQPÞ, since for the case we use
Q þ DiagðuÞ it is then trivial to derive bounds for the original
problem.

The present paper is organized as follows. In Section 2 we pres-
ent three methods for computing bounds for problem ðQPÞ. The ba-
sic spectral bounds of Section 2.1 have an expression involving the
eigenvalues ðkiÞni¼1 and distances ðdiÞn�1

i¼1 . They were originally intro-
duced in Ben-Ameur and Neto (2008a) for the maximum cut prob-
lem. Another method for computing bounds from a substitution of
the matrix Q by a sum of particular matrices is proposed in Section
2.2. Basic idea here is to replace the original problem ðQPÞ by sev-
eral instances each satisfying Proposition 1.1. A different approach
is undertaken in Section 2.3 where the original matrix Q is replaced
by a single matrix satisfying Proposition 1.1 and whose spectrum
differs from Q in some subset of eigenvalues. Then in Section 3
we draw a comparison between some of these bounds with the
one from a classical semidefinite relaxation. The bounds intro-
duced are then evaluated on instances of the maximum cut prob-
lem in Sections 4 and 5, before we draw some conclusions and
perspectives in Section 6.

2. Computing bounds for problem ðQPÞ

In this section we introduce three different ways of computing
bounds for problem ðQPÞ, all using the eigenvalues and eigenvec-
tors of the matrix Q (possibly with modified diagonal entries).
The basic spectral bounds of Section 2.1 have been firstly intro-
duced in Ben-Ameur and Neto (2008a) and are reminded here for
completeness, whereas the bounds introduced in Sections 2.2
and 2.3 are – up to the authors’ knowledge – completely new.

2.1. Basic spectral bounds

Using the smallest eigenvalue of the matrix Q the following
lower bound trivially holds: Z� P k1n. This bound can be strength-
ened by using the whole spectrum of the matrix Q.

Proposition 2.1. The following inequality holds: Z� P k1nþ
Pn�1

j¼1
d2

j ðkjþ1 � kjÞ.

Proof. Consider a vector y 2 f�1;1gn, and its expression in a basis
of eigenvectors: y ¼

Pn
i¼1aiv i. Then we namely have: yty ¼

n ¼
P

ia2
i . Also from the definition of the distances dj; j 2

f1; . . . ;ng, the following inequality holds: d2
j 6

Pn
i¼jþ1a2

i .
We have ytQy ¼

Pn
i¼1a2

i ki ¼ k1nþ
Pn

i¼2ðki � k1Þa2
i . Now, from

the last inequality mentioned above with j ¼ 1 we get:
a2

2 P d2
1 �

Pn
i¼3a2

i . Hence we have:

ytQy P k1nþ ðk2 � k1Þd2
1 � ðk2 � k1Þ

Xn

i¼3

a2
i þ

Xn

i¼3

ðki � k1Þa2
i ;

() ytQy P k1nþ ðk2 � k1Þd2
1 þ

Xn

i¼3

ðki � k2Þa2
i ;

and, inductively (by using analogously the inequality a2
j P

d2
j�1 �

Pn
i¼jþ1a2

i ), we get:

ytQy P k1nþ
Xn�1

i¼1

ðkiþ1 � kiÞd2
i : �

In the same way that we derived lower bounds on the optimal
objective value, upper bounds can be obtained. Using the largest
eigenvalue kn of the matrix Q we get: Z� 6 nkn. A better upper
bound using the whole spectrum is as follows.

Proposition 2.2. The following inequality holds: Z� 6 knnþ
Pn�1

j¼1
�d2

jþ1ðkj � kjþ1Þ.

Proof. Analogous to the proof of Proposition 2.1. h

Thus the results from Propositions 2.2 and 2.1 lead to the ‘‘spec-
tral gap”:

ðkn � k1Þn�
Xn�1

j¼1

ðkjþ1 � kjÞ d2
j þ �d2

jþ1

� �
: ð1Þ

Let Z�c stand for the optimal objective value of the following
relaxation of problem ðQPÞ : minfxtQxjx 2 ½�1;1�ng denoted ðQPCÞ
in what follows. In the particular case when the matrix Q has at
least one negative eigenvalue, then by computing the objective va-
lue of a properly scaled eigenvector associated with a negative
eigenvalue, we get the simple upper bound given hereafter.

Proposition 2.3. If the matrix Q has at least one negative eigenvalue
then this upper bound holds:

Z�c 6 min
kq

kvqk2
1
jkq < 0

( )
; ð2Þ

with kvqk1 ¼maxi2f1;...;ngvqi.

An upper bound for problem ðQPÞ can be obtained similarly.

Proposition 2.4. The following upper bound holds for problem ðQPÞ:

Z� 6 min
k0q

kv 0qk
2
1
jk0q < 0

( )
þ
Xn

i¼1

�qi; ð3Þ

where k01; k
0
2; . . . ; k0n denote the eigenvalues of the matrix

Q � Diagð�qÞ;v 01;v 02; . . . ;v 0n are corresponding unit eigenvectors and
�q ¼ ð�q1; . . . ; �qnÞ stands for the diagonal of the matrix Q.

Proof. It follows from a result by Rosenberg (see Proposition 1 in
Rosenberg (1972)) that the optimal objective values of problems
ðQPÞ and ðQPCÞ are identical if the matrix Q has zero diagonal
entries only. Applying this property and Proposition 2.3 to the
matrix Q � Diagð�qÞ leads to the result. h

A ”geometric view” to the spectral bound of Proposition 2.1 is
provided by the following result.

Proposition 2.5. If a vector y 2 f�1;1gn satisfies: distðy; Lin
ðv1; . . . ;vkÞÞ ¼ dk for all indices k 2 f1; . . . ;n� 1g such that
kkþ1 > kk then y is an optimal solution of problem ðQPÞ.

Proof. Let y verify the assumptions of the proposition. Let d0i stand
for the distance distðy; Linðv1; . . . ;v iÞÞ and I denotes the set of indi-
ces k for which the strict inequality holds: kkþ1 > kk. Then we have

d0i ¼ di; 8i 2 I and d0i P di otherwise. Also,
Pn

j¼1d2
j ðkjþ1 � kjÞ ¼
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