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a b s t r a c t

The n-step mixed integer rounding (MIR) functions generate n-step MIR inequalities for MIP problems
and are facets for the infinite group problems. We show that the n-step MIR functions also directly gen-
erate facets for the finite master cyclic group polyhedra especially in many cases where the breakpoints
of the n-step MIR function are not necessarily at the elements of the group (hence the linear interpolation
of the facet coefficients obtained has more than two slopes).

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Gomory (1969) introduced the group relaxation approach to
integer programming (IP) and showed that facets of group polyhe-
dra are sources for generating valid inequalities for IP problems.
Many fundamental results in this regard were presented in
Gomory (1969) and Gomory and Johnson (1972a,b). Development
of facets for finite and infinite group polyhedra has been studied in
many recent publications such as Aráoz et al. (2003), Dash and
Günlük (2006a,b), Dey and Richard (2007), Gomory and Johnson
(2003), Gomory et al. (2003), Kianfar and Fathi (2009), Klabjan
(2007) and Richard et al. (2009).

Facets of the polyhedra defined by the cyclic group relaxation of
a single IP constraint have been of particular interest; see Gomory
(1969); Gomory and Johnson (1972a,b, 2003). If CN ¼ 0; 1

N ; . . . ;
N�1

N

� �
denotes the cyclic group of order N with addition modulo 1, the fi-
nite master cyclic group polyhedron over CN with the right-hand side
r
N2CN;

r
N – 0, is defined as PðCN;

r
NÞ¼ conv ðx1; . . . ;xN�1Þ 2ZN�1

þ :
�

PN�1
j¼1

j
N xj� r

N mod1g, where conv means convex hull.
Following the same concept, the infinite group problem is de-

fined over the group of real numbers, U = [0,1), with addition mod-
ulo 1. For u0 2 U, u0 – 0, let X(U,u0) be the set of integer-valued
functions x(u) on U with finite support such that

P
u2UuxðuÞ �

u0 mod1. Then the infinite group polyhedron with the right-hand
side u0 is defined as PðU;u0Þ ¼ convfxðuÞ 2 XðU;u0Þg.

In Kianfar and Fathi (2009), we introduced the n-step mixed
integer rounding (MIR) functions and proved that they are facet-
defining for the infinite group problem. In this paper we further
those results and show that these functions can also directly gener-
ate facets for the finite master cyclic group polyhedra. In other
words, we show that we get facets simply by taking the values of
the n-step MIR function (with appropriate parameters) at the ele-
ments of CN. We will note that in the case where the breakpoints
of the n-step MIR function are all at the elements of CN (the function
obtained by linear interpolation of the facet coefficients is two-
slope), this is a direct result of the properties proved in Gomory
and Johnson (1972b) (see Section 3). However, we will show that
the facet-defining property of these functions is also true for many
cases where the breakpoints of the n-step MIR function are not nec-
essarily at the elements of CN (and therefore the linear interpolation
of the facet coefficients can have more than two slopes).

For the special case of 2-step MIR functions, this result was pre-
viously proved in Dash and Günlük (2006a), although the line of
argument used there was different from the one that we employ
here.

In Section 2 we review the n-step MIR functions and some rel-
evant results from Kianfar and Fathi (2009). In Section 3 we show
our main result, and in Section 4 we discuss the extension to the
polyhedra with continuous variables.

2. Background

In Kianfar and Fathi (2009), we presented the n-step MIR
inequalities for the feasible set of a general IP constraint, i.e.
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Y ¼ ðx1; . . . ; xjJjÞ 2 ZjJjþ :
X
j2J

ajxj þ z ¼ b; z 2 Z

( )
;

where b R Z and J is the index set. They showed that each n-step
MIR inequality is easily generated by applying a (positive or nega-
tive) n-step MIR function on aj’s. Here we bring the definition of
the n-step MIR function from Kianfar and Fathi (2009) with a slight
change in notation. Let a ¼ ða1;a2; . . . ;anÞ 2 Rn, where ai > 0 for all i.
For b 2 R, let bða0Þ ¼ b. Then, for n P 1 we define bðanÞ recursively as

bðanÞ ¼ bðan�1Þ � anbbðan�1Þ=anc:

Now define the subsets I0; . . . ; In � R for any given n, b and a as
follows:

� Im ¼ fu 2 R : uðaiÞ < bðaiÞ; i ¼ 1; . . . ;m; uðamþ1Þ P bðamþ1Þg, for m =
0, . . . ,n � 1;
� In ¼ fu 2 R : uðaiÞ < bðaiÞ; i ¼ 1; . . . ;ng.

Definition 1. Let n 2 N; b 2 R, and a ¼ ða1;a2; . . . ;anÞ 2 Rn, where
ai > 0 for all i. If b/a1 < db/a1e and bðai�1Þ=ai < dbðai�1Þ=aie 6 ai�1=ai for
i = 2, . . . ,n, then the positive n-step MIR function for the right-hand
side b is defined as

ga;b
þ ðuÞ ¼

a1d
n;bðuÞ � uða1Þ

Qn
l¼2

bðal�1Þ
al

& ’

ða1 � bða1ÞÞ
Qn

l¼2
bðal�1Þ

al

& ’ ; ð1Þ

where dn,b(u) is

�
Qn

l¼2
bðal�1Þ

al

� �
if u 2 I0;

� Pm
i¼2

Qn
l¼iþ1

bðal�1Þ

al

2
666

3
777

0
@

1
A uðai�1Þ

ai

$ %
þ

Qn
l¼mþ2

bðal�1Þ

al

2
666

3
777

0
@

1
A uðamÞ

amþ1

& ’
if

u 2 Im, m = 1, . . . ,n � 1;

�
Pn

i¼2

Qn
l¼iþ1

bðal�1Þ
al

& ’ !
uðai�1Þ

ai

� �
þ uðanÞ

bðanÞ if u 2 In.

Also if �b/a1 < d�b/a1e and ð�bÞðai�1Þ=ai < dð�bÞðai�1Þ=aie 6
ai�1=ai for i = 2, . . . ,n, then the negative n-step MIR function for the
right-hand side b is defined as

ga;b
� ðuÞ ¼ ga;�b

þ ð�uÞ: ð2Þ

It is easy to verify that ga;b
þ ðuÞ is a two-slope piecewise linear

continuous function. It is also periodic in u and b with period a1.
In other words ga;bþkba1

þ ðuþ kua1Þ ¼ ga;b
þ ðuÞ for kb; ku 2 Z. Of course

ga;b
� ðuÞ also has all these properties.

The formal statement of the result regarding n-step MIR
inequalities is as follows (Corollary 1 in Kianfar and Fathi
(2009)). If a1 ¼ 1=t; t 2 N, and n, b, and a = (a1,a2, . . . ,an) satisfy

the conditions required for the definition of ga;b
þ ð�Þ, then the positive

n-step MIR inequality
P

j2Jg
a;b
þ ðajÞxj P 1 is valid for the set Y. Also, if

these parameters satisfy the conditions required for the definition
of ga;b

� ð�Þ, then the negative n-step MIR inequality
P

j2Jg
a;b
� ðajÞxj P 1 is

valid for Y.
The result from Kianfar and Fathi (2009) of interest in this paper

is that the n-step MIR inequalities when generated for P(U,u0) are
not only valid but also facet-defining. A non-trivial valid inequality
for P(U,u0) is completely defined by its coefficients, and hence can
be defined as a real-valued function p defined for all u 2 U such
that p(0) = 0, p(u) P 0, u 2 U and

P
u2UpðuÞxðuÞP 1 for any

x(u) 2 X(U,u0). A valid inequality p for P(U,u0) is a facet (extreme va-
lid inequality) if p cannot be written as a strict convex combination
of two distinct valid inequalities for P(U,u0). We have the following
result from Theorem 9 in Kianfar and Fathi (2009).

Theorem 1. Kianfar and Fathi (2009). Let u0 2 U; n; t 2 N, and
a = (a1,a2, . . . ,an) such that a1 ¼ 1=t; ai 2 R; ai > 0 for i = 2, . . . ,n. If
u0/a1 < du0/a1e and uðai�1Þ

0 =ai < duðai�1Þ
0 =aie 6 ai�1=ai for i = 2, . . . ,n,

then the function ga;u0
þ ðuÞ defines a facet for P(U,u0). Similarly, if �u0/

a1 < d�u0/a1e and ð�u0Þðai�1Þ=ai < dð�u0Þðai�1Þ=aie 6 ai�1=ai for
i = 2, . . . ,n, the function ga;u0

� ðuÞ defines a facet for P(U,u0).

3. Using n-step MIR functions to generate facets for finite
master cyclic group polyhedra

In this section we show that n-step MIR functions directly gen-
erate facets for the finite master cyclic group polyhedra especially
in many cases where the breakpoints of the n-step MIR function
are not necessarily elements of CN. Note that the set used in the
definition of P CN;

r
N

� 	
is equivalent to a special case of the set Y,

where J ¼ f1; . . . ;N � 1g; aj ¼ j
N, and b ¼ r

N. We denote this set by

YC. Therefore YC ¼ ðx1; . . . ;xN�1Þ 2 ZN�1
þ :

PN�1
j¼1

j
N xj þ z ¼ r

N ; z 2 Z
n o

,

and P CN;
r
N

� 	
¼ convðYCÞ. The vector p ¼ ðp1; . . . ;pN�1Þ 2 RN�1

þ de-

fines a valid inequality for P CN;
r
N

� 	
if
PN�1

j¼1 pjxj P 1 for every

(x1, . . . ,xN�1) 2 YC. A valid inequality p for P CN;
r
N

� 	
defines a facet

if p cannot be written as a strict convex combination of two dis-
tinct valid inequalities for P CN;

r
N

� 	
.

The following result from Gomory and Johnson (1972b) states a
relationship between facets of the infinite group polyhedra and fi-
nite master cyclic group polyhedra.

Theorem 2. Gomory and Johnson (1972b). If q(u) defines a facet
for P(U,u0), where u0 ¼ r

N, and it consists of straight line segments
connected at values u ¼ j

N for j = 0, . . . ,N, then p = (p1, . . . ,pN�1),
where pj ¼ q j

N


 �
, defines a facet for P CN;

r
N

� 	
.

In the case that the breakpoints of the piecewise linear n-step
MIR function fall onto the elements of CN, the facet-generating
property of this function for P CN;

r
N

� 	
is a direct result of Theorem

2. We formally state this property in Lemma 1 since we will use
it in proving our main result in Theorem 4.

Lemma 1. Let a ¼ ða1; . . . ;anÞ ¼ d1
N ;

d2
N ; . . . ; dn

N


 �
be the parameter

vector, where n;N; di 2 N; i ¼ 2; . . . ;n and N
d1
2 N. Also let b ¼ r

N be
the right-hand side, where r 2 N and r < N. If b/a1 < db/a1e and

bðai�1Þ=ai < dbðai�1Þ=aie 6 ai�1=ai for i = 2, . . . ,n, then p = (p1, . . . ,

pN�1), where pj ¼ ga; rN
þ

j
N


 �
, defines a facet for P CN;

r
N

� 	
. Similarly, if

�b/a1 < d�b/a1e and ð�bÞðai�1Þ=ai < dð�bÞðai�1Þ=aie 6 ai�1=ai for i =

2, . . . ,n, then p = (p1, . . . ,pN�1), where pj ¼ ga; r
N�

j
N


 �
, defines a facet

for P CN;
r
N

� 	
.

It is easy to see why Lemma 1 is true: Let p = (p1, . . . ,pN�1),
where pj ¼ g

a; rN
þ

j
N


 �
. By Theorem 1, the function g

a; rN
þ ðuÞ defines a fa-

cet for P U; r
N

� 	
. Moreover, this function is a piecewise linear contin-

uous function. The breakpoints of this function happen at the
boundary points of the sets Im, m = 0,1, . . . ,n. These are the points
at which either uðaiÞ ¼ 0 or uðaiÞ ¼ r

N

� 	ðaiÞ. Now since 0, r
N and ai, for

i = 1, . . . ,n, are all integer multiples of 1
N, all these boundary points

and hence the breakpoints of the function g
a; rN
þ ðuÞ occur on the ele-

ments of the group CN. Therefore, g
a; rN
þ ðuÞ over U consists of straight

line segments connected at values u ¼ j
N for j = 0, . . . ,N. Thus, by

Theorem 2, p defines a facet for P CN;
r
N

� 	
. A similar argument proves

the result for the negative n-step MIR function.

Example 1. Let a ¼ 20
20 ;

5
20 ;

2
20

� 	
and b ¼ 8

20. These values of a and b
satisfy the conditions of Lemma 1. Therefore according to this
lemma, p = (p1, . . . ,p19), where pj ¼ ga;b

þ
j

20


 �
defines a facet for

P C20;
8

20

� 	
. In Fig. 1 the pj values of this facet for j = 1, . . . ,19 are
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