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a b s t r a c t

In this paper, a general approach is proposed to address a full Bayesian analysis for the class of quadratic
natural exponential families in the presence of several expert sources of prior information. By expressing
the opinion of each expert as a conjugate prior distribution, a mixture model is used by the decision
maker to arrive at a consensus of the sources. A hyperprior distribution on the mixing parameters is con-
sidered and a procedure based on the expected Kullback–Leibler divergence is proposed to analytically
calculate the hyperparameter values. Next, the experts’ prior beliefs are calibrated with respect to the
combined posterior belief over the quantity of interest by using expected Kullback–Leibler divergences,
which are estimated with a computationally low-cost method. Finally, it is remarkable that the proposed
approach can be easily applied in practice, as it is shown with an application.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The choice of suitable prior distributions is not a simple task
where Bayesian methods are applied, particularly, when issues re-
lated to analysis of experts’ opinions and decision making are dealt
with (see Korhonen et al. (1992), for a review of multiple criteria
decision making problems). Often, the prior distribution is chosen
to approximately reflect the initial expert’s opinion. In this context,
a common choice is a conjugate prior distribution. However, in
some situations, a single conjugate prior distribution may be inad-
equate to accurately reflect available prior knowledge.

Dalal and Hall (1983) and Diaconis and Ylvisaker (1985)
showed that it is possible to extend these distributions through
the use of mixtures of conjugate prior distributions (see also Lijoi
(2003) for a more recent study). The main advantage is that mix-
tures of conjugate prior distributions can be sufficiently flexible
(allowing, for example, multimodality), while they make simplified
posterior calculations possible (since they are also conjugate fam-
ilies). Some interesting applications on prior mixtures can be found
in Savchuk and Martz (1994), Liechty et al. (2004), and Atwood and
Youngblood (2005).

This paper provides a general framework that allows to perform
a full Bayesian analysis for natural exponential families with qua-
dratic variance function (NEF-QVF) by using mixtures of conjugate

prior distributions with unknown weights. These families have
been considered because they contain distributions very com-
monly used in real applications, such as Poisson, binomial, nega-
tive-binomial, normal or gamma.

Throughout the paper, it is assumed that a decision maker con-
sults several sources about a quantity of interest. Therefore, it is con-
sidered that the prior information comes from several sources such
as experts. The opinion of each expert is elicited as a conjugate dis-
tribution over a quantity of interest (see, e.g., Szwed et al. (2006) for
a particular case of prior distribution specification). Then, the deci-
sion maker combine the experts’ distributions by using a mixture
model in order to represent a consensus of several experts. Chen
and Pennock (2005) observed that the weights selection is an incon-
venience of this approach. Sometimes, the weights are fixed in ad-
vance. Here, the weights are considered as parameters and a
suitable hyperprior distribution is specified. This fact leads to great-
er freedom and flexibility in the modeling of initial information. In
order to obtain the hyperparameter values, a general procedure
based on expected Kullback–Leibler divergences is proposed. An
advantage is that the process is analytical. General expressions that
allow a direct implementation for all distributions in these families
are obtained. Nevertheless, other hyperparameter values can be
chosen by the reader and used in the subsequent Bayesian analysis.

Finally, the expected discrepancies between the combined pos-
terior belief over the quantity of interest and each expert’s prior
belief are analyzed by using the expected Kullback–Leibler diver-
gence between the mixture of the posterior distributions for this
quantity and the prior distribution for each expert. A Monte Car-
lo-based approach is considered to estimate these values.
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The outline of the paper is as follows. Section 2 presents the
basic concepts and notation. In Section 3, a Bayesian analysis of
NEF-QVF distributions by using mixtures of conjugate prior distri-
butions is developed. In Section 4, the experts’ prior opinions are
calibrated with respect to the combined posterior opinion over
the quantity of interest by using expected Kullback–Leibler diver-
gences. Section 5 shows a binomial application. Finally, a conclu-
sion and a discussion including an alternative method for the
choice of the hyperparameter values, are presented in Section 6.

2. Background

In this section, a short review of the natural exponential family
and conjugate prior distributions is presented. Besides, the nota-
tion will be fixed for the rest of the paper.

Let g be a r-finite positive measure on the Borel set of R not
concentrated at a single point. A random variable X is distributed
according to a natural exponential family if its density with respect
to g is:

fhðxÞ ¼ exp xh�MðhÞf g; h 2 H; ð1Þ

where MðhÞ ¼ log
R

expðxhÞgðdxÞ and H ¼ fh 2 R : MðhÞ <1g is
nonempty. h is called the natural parameter. Besides, it is satisfied
EðXjhÞ ¼ M0ðhÞ ¼ l. See Brown (1986) for a review on this family.

The mapping l = l(h) = M
0
(h) is differentiable, with inverse

h = h(l). It provides an alternative parameterization for fh(x) called
mean parameterization.

The function V(l) = M
00
(h) = M

00
(h(l)), l 2X, is the variance func-

tion of (1) and X is the mean space. For NEF-QVF, this function has
the expression: V(l) = v0 + v1l + v2l2, where l 2X and v0, v1 and
v2 are real constants (see Morris (1982) and Gutiérrez-Peña
(1997)).

Conjugate prior distributions as in Morris (1983) and Gutiérrez-
Peña and Smith (1997) are considered. Therefore, the mean param-
eterization will be used throughout this paper. Let l0 2X and
m > 0, the conjugate prior distribution on l is:

pðlÞ ¼ K0 expfml0hðlÞ �mMðhðlÞÞgV�1ðlÞ;

where K0 is chosen to make
R

X pðlÞdl ¼ 1 and l0 is the prior mean.

3. Bayesian analysis

Let x1,x2, . . .,xn be a random sample drawn from density (1),
then the likelihood function parameterized in terms of the mean is:

lðljxÞ ¼ expfn�xhðlÞ � nMðhðlÞÞg;

with �x ¼ n�1Pn
i¼1xi.

3.1. Prior distributions

Suppose that the prior information for l is provided by k ex-
perts as conjugate prior distributions:

pjðlÞ ¼ K0j expfl0jmjhðlÞ �mjMðhðlÞÞgV�1ðlÞ; j ¼ 1;2; . . . ; k:

The prior distributions can be mixed by different methods to
form a combined prior distribution (see, e.g., Genest and Zidek
(1986)). One of these methods is to use a mixture of prior
distributions:

pðljxÞ ¼
Xk

j¼1

xjpjðlÞ;

where xj, j = 1,2,. . .,k, are the mixture weights, which are nonneg-
ative and sum to unity.

Chen and Pennock (2005) observed that the weight selection is
a possible inconvenience. Sometimes, the weights are chosen to re-
flect the relative importance of each expert. Here, the weight vec-
tor is considered as a random vector and a hyperprior distribution
is proposed. The joint prior distribution for the parameters is ex-
pressed as:

pðx;lÞ ¼ pðxÞpðljxÞ;

where the weight vector is distributed as a Dirichlet (d1,d2, . . .,dk) on
the simplex v = {(x1,x2, . . .,xk):xj P 0,

Pk
j¼1xj ¼ 1g, and a mix-

ture of conjugate prior distributions is considered for p(ljx).
Therefore:

pðx;lÞ ¼ pðxÞpðljxÞ ¼ zðdÞxd1�1
1 . . .xdk�1

k

� � Xk

j¼1

xjpjðlÞ
 !

;

where zðdÞ ¼ C
Pk

l¼1dl

� �
=
Qk

l¼1CðdlÞ.
The hyperparameter values d1,d2, . . .,dk are chosen to assure that

no expert has more prior influence than the others on the joint
prior distribution p(x,l) This problem is solved in two steps.
Firstly, the normalized vector, d� ¼ ðd�1; d

�
2; . . . ; d�kÞ with

d�j ¼ dj=
Pk

l¼1dl; j ¼ 1;2; . . . ; k, is obtained by using the expected
Kullback–Leibler divergence between the combined prior distribu-
tion p(ljx) and the component prior distribution pl (see, e.g., Sun
and Berger (1998) for the use of expected Kullback–Leibler diver-
gence in a reference prior framework). Next, the values for
d1,d2, . . .,dk are calculated by maximizing the resultant entropy.

For the first step, it is satisfied:

ExðKLðpkplÞÞ ¼ Ex

Z
X
pðljxÞ log

pðljxÞ
plðlÞ

� �
dl

� �
¼ Ex EljxðlogpðljxÞÞ

� �
� ExðEljxðlogplðlÞÞÞ;

where Ex and Eljx denote the expectations with respect to p(x)
and p(ljx), respectively. The objective is to find d�1; d

�
2; . . . ; d�k, such

that:

ExðKLðpkp1ÞÞ ¼ ExðKLðpkp2ÞÞ ¼ � � � ¼ ExðKLðpkpkÞÞ; ð2Þ

with the constrains
Pk

j¼1d
�
j ¼ 1 and d�j P 0.

Therefore, the value of the expected discrepancy between the
combined prior distribution and the prior distribution elicited by
each expert, pl(l), is the same for l = 1,2,. . .,k.

The parameter values satisfying the previous equalities are the
same that hold:

ExðEljxðlogphðlÞÞÞ � ExðEljxðlogp1ðlÞÞÞ ¼ 0; for h

¼ 2;3; . . . ; k; ð3Þ

with the same constrains. The previous addends satisfy (see Appen-
dix A):

ExðEljxðlogplðlÞÞÞ ¼
Z

v

Z
X
pðljxÞ logplðlÞdlpðxÞdx

¼
Xk

j¼1

d�j Epj
ðlogplðlÞÞ;

where the expectation with respect to the experts’ prior distribu-
tions can be expressed as:

Epj
ðlog plðlÞÞ ¼ log K0l þmll0lEpj

ðhðlÞÞ �mlEpj
ðMðhðlÞÞÞ

þ Epj
ðlog V�1ðlÞÞ:

By taking into account the previous expressions, the solution for
the normalized vector, d*, can be obtained from the linear equation
system given by:
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