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a b s t r a c t

To reduce labor-intensive and costly order picking activities, many distribution centers are subdivided into
a forward area and a reserve (or bulk) area. The former is a small area where most popular stock keeping
units (SKUs) can conveniently be picked, and the latter is applied for replenishing the forward area and stor-
ing SKUs that are not assigned to the forward area at all. Clearly, reducing SKUs stored in forward area
enables a more compact forward area (with reduced picking effort) but requires a more frequent replenish-
ment. To tackle this basic trade-off, different versions of forward–reserve problems determine the SKUs to
be stored in forward area, the space allocated to each SKU, and the overall size of the forward area. As pre-
vious research mainly focuses on simplified problem versions (denoted as fluid models), where the forward
area can continuously be subdivided, we investigate discrete forward–reserve problems. Important sub-
problems are defined and computation complexity is investigated. Furthermore, we experimentally ana-
lyze the model gaps between the different fluid models and their discrete counterparts.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Picking highly-demanded stock keeping units (SKUs) directly
from bulk storage typically requires removal from deep-lane pallet
racks and causes unproductive travel between far-distant picking
locations. Thus, especially in high-volume distribution, many
warehouses are subdivided into a forward and a reserve area.
The forward area serves as a ‘‘warehouse within a warehouse’’
and stores popular SKUs in easy-to-access racks, e.g., gravity flow
racks, concentrated in a compact area. The use of a forward area
improves order picking efficiency, but requires additional effort
for replenishing the forward area from the reserve area (double
handling). Clearly, reducing SKUs stored in forward area enables
a more compact forward area (with reduced picking effort) but re-
quires a more frequent replenishment. To tackle this basic trade-
off, forward–reserve problems have been formulated and modeled
to determine the SKUs to be stored in the forward area, the space
allocated to each SKU, and the overall size of the forward area.

Hackman et al. (1990) were the first that formulated a mathe-
matical model to allocate space in a continuously divisible forward
area and proposed a greedy heuristic. Their work motivated the pa-
per of Hackman and Platzman (1990) who proposed a generic dis-
crete model for deciding which SKUs to pick from the automated

(forward) area and how much space to allocate on which (forward)
storage device to each selected SKU. They also developed a heuris-
tic procedure with a good guaranteed performance whenever each
allocation is a small fraction of storage space. Further contributions
stem from Frazelle et al. (1994), who extended the model by
regarding the size of a forward area as a decision variable, Van
den Berg et al. (1998), who optimized unit-load replenishments
that take place during busy and idle periods, Bartholdi and
Hackman (2008), who analyzed two wide-spread real-world stock-
ing strategies for small parts in a forward area, and Gu et al. (2010),
who provided a branch-and-bound algorithm for solving the joint
assignment and allocation problem. Except for the contribution
of Hackman and Platzman (1990) and Van den Berg et al. (1998),
all these studies presuppose the ‘‘fluid model’’, where a forward
area can continuously be partitioned among SKUs. Clearly, this
simplifying assumption might be justified if merely an approxi-
mate benchmark solution is sought. However, for a detailed stock-
ing plan of the forward area, the fluid model shows some severe
drawbacks (Bartholdi and Hackman, 2011):

� SKUs can only be stored in discrete units, so that a continuous
distribution of space in either case can only be an approxima-
tion of reality. This approximation becomes the less accurate
the larger an item compared to the size of the shelves.
� Often the number of units stocked in forward area cannot be

increased piece-wise but only in steps of multiple units. For
instance, consider a gravity flow rack where each lane is filled
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with units of a single homogeneous product. In this case, e.g.,
either 0, 1000 or 2000 units can be stored depending on
whether none, one or two lanes (each having a capacity for
1000 units) are allocated to the respective SKU.
� Finally, some SKUs show sub-additivity with regard to space

because they can be stored in a nested fashion. Consider bath-
tubs where two units occupy only a little more space than a sin-
gle unit. This coherency cannot be considered within the
continuous forward–reserve problem, because here a linear
increase of space utilization is presupposed.

To avoid these shortcomings, this paper considers the discrete
forward–reserve problem. Specifically, we investigate three differ-
ent problem settings each within two important parameter con-
stellations, so that in total six problem cases are treated. The
most basic problem setting is the discrete forward–reserve alloca-
tion problem (DFRAP), where the given space of a forward area is to
be partitioned among a predetermined set of SKUs (see Section 2).
The discrete forward–reserve assignment and allocation problem
(DFRAAP) combines the space allocation problem with the assign-
ment problem of selecting the products to be stored in the forward
area (see Section 3). Finally, the discrete forward–reserve alloca-
tion and sizing problem (DFRASP) treats the allocation problem
jointly with the sizing problem, i.e., for a given set of products a
forward area of variable size is to be allocated (see Section 4).

With regard to the parameter constellations, we differentiate
between variable storage modes and equally sized shelves. In the
former case, for any product different storage alternatives exist.
For instance, SKUs can be stored in small or large boxes, on one
or more pallets in shelves of variable size, or in one or more lanes
of varying capacity in a gravity flow rack, where each alternative
corresponds to a certain storage mode. Each mode is defined by a
specific space utilization and the corresponding discrete number
of stored product units. Clearly, the confinement to equally sized
shelves defines a special case of variable storage modes. Here,
the storage mode of each SKU is already defined and the decision
reduces to determining the discrete number of equally sized
shelves (each storing an identical multiple of units) to be assigned
to any product. Typically, standardized racks with equally sized
shelves, e.g., identical lanes in a gravity flow rack, are applied in
a wide range of distribution centers as they allow for fast and sim-
ple re-assignments, i.e., some products that have been stored for-
ward during the last period will be partly or fully replaced by
new products within the next period. Furthermore, standardized
racks, typically, cause less investment cost.

In the following, the DFRAP, the DFRAAP, and the DFRASP are
treated in Sections 2, 3, and 4, respectively. In each section both
parameter constellations are investigated by defining the respec-
tive problem version and either providing a polynomial time solu-
tion procedure or proving NP-hardness. Furthermore, in each case
we explore the loss in precision of the continuous problem version
compared to the discrete case in a comprehensive computational
study. Finally, Section 5 concludes the paper.

2. The discrete forward–reserve allocation model (DFRAP)

2.1. DFRAP with variable storage modes

Consider a predefined set P of products (or SKUs) to be stored in
a forward area of given size S, where due to the compact size of the
forward area the locations of SKUs are assumed to not affect pick-
ing efficiency. Each product i 2 P can be stored in one of ni possible
modes j = 1, . . . , ni in the forward area. Associated with each mode j
for SKU i is a value aij > 0 which gives the (integral) number of units
of SKU i that can be stored in mode j. The space required by storing

product i in mode j is denoted by wij. Throughout the paper we as-
sume that the storage modes of each product i are labeled so that
wi1 < wi2 < � � � < wini

. According to this, we consider only non-
dominated storage modes for each SKU i 2 P, i.e., ai1 < � � � < aini

.
As formulated in the mathematical model (1)–(4), the DFRAP

decides on the mode in which each SKU is stored in the forward
area (restriction (2)). Equivalently, it decides on the number of
units to be stored per product without exceeding given storage
space S (restriction (3)) which is assumed to be at least as large
as
P

i2Pwi1. Otherwise, not all products of the predefined set could
be stored in the forward area. Binary variables xij defined in (4)
indicate which storage mode is chosen for SKU i. Clearly, the more
space is associated with each SKU the less restocks are required
per time unit. If di represents the total demand for product i dur-
ing the planning period, e.g., a year, then the number of restocks
per SKU can simply be calculated by dividing the total demand di

by the number of units stored in the forward area of the respec-
tive product. Note that the underlying assumptions with regard
to restocks are discussed in detail by Bartholdi and Hackman
(2008).

When weighting the number of restocks with product specific
replenishment cost ci the objective (1) of the DFRAP is to minimize
the overall restock cost per planning period:

DFRAP : Minimize C1ðxÞ ¼
X
i2P

Xni

j¼1

ci
di

aij
xij ð1Þ

subject to
Xni

j¼1

xij ¼ 1 8 i 2 P ð2Þ

X
i2P

Xni

j¼1

wijxij 6 S ð3Þ

xij 2 f0;1g 8 i 2 P; j ¼ 1; . . . ;ni ð4Þ

The DFRAP is mathematically equivalent to the well-known
multiple-choice knapsack problem (MCKP), which becomes obvi-
ous when interpreting the parameters of the MCKP as follows:

� SKUs correspond to classes and (storage) modes (of a SKU)
correspond to items (of a class),

� the profit of item j of class i is pij = �cidi/aij (minimizingP
i

P
jpijxij is equivalent to maximizing

P
i

P
j � pijxij),

� the weight of item j of class i equals the space wij required
by storing SKU i in mode j,

� the capacity of the knapsack is c = S,
� the size of class i is ni.

Clearly, the DFRAP is NP-hard as the MCKP, which is a general-
ization of the knapsack problem, is well-known to be NP-hard
(see Kellerer et al., 2004, Chap. 11). Furthermore, pseudo-
polynomial solution procedures for the MCKP exist, e.g., the
dynamic programming approach of Dudzinski and Walukiewicz
(1987), so that it follows that the DFRAP is weakly NP-hard.

2.2. DFRAP with equally sized shelves

For adopting the basic DFRAP to the case of equally sized
shelves of a rack or lanes of identical capacity in a gravity flow rack,
we keep to the notation introduced in Section 2.1 with a slightly
different interpretation of S, wij, and aij. Parameter S denotes the to-
tal (integral) number of shelves that are available for storing the
products of set P in the forward area. Hence, we let wij denote
the number of shelves that are available when storing SKU i in
mode j. As we agreed on allowing any integral number of shelves
between 1 and ni for forward storing of SKU i, where ni = S � jPj + 1
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