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a b s t r a c t

While estimating production technology in a primal framework production function, input and output
distance functions and input requirement functions are widely used in the empirical literature. This
paper shows that these popular primal based models are algebraically equivalent in the sense that they
can be derived from the same underlying transformation (production possibility) function. By assuming
that producers maximize profit, we show that in all cases, except one, the use of ordinary least squares
(OLS) gives inconsistent estimates irrespective of whether the production, input distance and input
requirement functions are used. Based on several specifications of the production and input distance
function models, we conclude that one can estimate the input elasticities and returns to scale consis-
tently using instruments on only one regressor. No instruments are needed if either it is assumed that
producers know the technology entirely (including the so-called error term) or a system approach is used.
We used Norwegian timber harvesting data to illustrate workings of various model specifications.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Specification and estimation of the production function is
important in production economics. In spite of many advances in
the last 80 plus years since the introduction of Cobb–Douglas pro-
duction function (Cobb and Douglas, 1928) in 1928 some of the
fundamental issues are still debated. The two main issues of con-
cern are specification and estimation of the underlying technology.
The specification issue is important because there are many differ-
ent ways in which one can specify the underlying technology.
Although these alternative specifications are algebraically the
same, they are not the same from econometric estimation point
of view. These specifications use different econometric assump-
tions, and their data requirements are often different. Needless to
say that the empirical results differ and this creates a big problem
to the applied researchers who want to know which approach is
appropriate to use. The choice is often dictated by what is endog-
enous (choice/decision variables) to the producers, and what is
the objective of the producers. Cost minimization and profit max-
imization behaviors are widely discussed in microeconomics. Here
we assume that the producers maximize profit in deciding their
optimal output and input quantities (which are endogenous).
Although the endogeneity issue was first addressed in Marschak
and Andrews in 1944, it is still debated whether it is necessary

to use a system approach to handle endogeneity problems.1 In this
paper we address these issues both theoretically and empirically.
Our focus is on the primal specifications. We address the endogene-
ity issue primarily from economic theory (producer behavior) point
of view as in Hoch (1958, 1962), Mundlak and Hoch (1965), Mundlak
(1961) and Zellner et al. (1966). Furthermore, we discuss both single
and system approaches for estimating the technology using cross-
sectional data under a variety of cases.

Since the endogeneity problem comes from what are decision
variables to the producers and what is the objective (economic
behavior) of the producers, it is likely that one method cannot han-
dle all situations. Zellner et al. (1966) showed that if producers
maximize expected profit, the use of OLS in estimating the produc-
tion function representation of the technology is appropriate in the
sense that the OLS estimators are consistent. However, if producers
know the so-called ‘unobserved’ (to the researchers) managerial
input or management (Mundlak, 1961), the OLS estimators of the
production function will be inconsistent even under expected prof-
it maximization behavioral assumption. Similarly, if producers
minimize cost and output is exogenously given, the use of OLS to
the input distance function (not the production function) is appro-
priate in the sense that the OLS estimators are consistent. In a mul-
tiple output case (not considered here), the use of OLS to the
output distance function formulation is appropriate under the

0377-2217/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2011.09.043

q I would like to thank three anonymous referees for their constructive and
encouraging comments.
⇑ Tel.: +1 607 777 4762; fax: +1 607 777 2681.

E-mail address: kkar@binghamton.edu

1 See Nerlove (1965) for a comprehensive treatment of the issue from a system
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assumption that producers maximize revenue and inputs are exog-
enously given (Coelli, 2000). Kumbhakar (2011) show that the use
of OLS to either input or output distance function will give incon-
sistent parameter estimates if producers maximize return to the
outlay (Färe et al., 2002) and both inputs and outputs are endoge-
nous (choice variable). The use of OLS in the input requirement
function formulation (Diewert, 1974) gives inconsistent parameter
estimates if there are more than one endogenous input variables.
This is the case even if outputs are exogenous. Various formula-
tions of the underlying production technology are routinely used
in the literature without discussing the endogeneity issue that
we focus here.2

The rest of the paper is organized as follows. Section 2 intro-
duces both the Cobb–Douglas and translog transformation func-
tions and show how one can derive the production, input
distance and input requirement functions by using different nor-
malizations. Section 3 deals with estimation of the Cobb–Douglas
and translog specifications in many different forms using a single
equation framework. We do the same in Section 4 using the system
approach. Section 5 describes the data and Section 6 reports results
from both Cobb–Douglas and translog models from both the single
and system approaches. Section 7 concludes the paper.

2. Representations of the transformation function

2.1. Cobb–Douglas transformation function

Assume that a producer uses J inputs x to produce a single out-
put y. The functional relationship between x and y is usually de-
scribed by a production function f : RK

þ ! Rþ where y = A f(x),
where A is the efficiency parameter (function). We write the rela-
tionship in a more general form, viz., Af(y,x) = 1, and call it a trans-
formation function instead of a production function which
becomes a special case. Suppose that f(�) is Cobb–Douglas (CD) so
that we can write it as

CD transformation function : Aya
Y

j

x
bj

j ¼ 1 ð1Þ

We now show that various primal functions representing the above
transformation function can be derived simply by using different
identifying (normalizing) constraints. Note that for the CD specifica-
tion in (1) we need to normalize one parameter.

If we normalize a = �1 then we get the standard CD production
function specification, viz.,

Production function : y ¼ A
Y

j

x
bj

j ð2Þ

If we rewrite (1) as

Ax
P

j
bj

1 ya
Y
j¼2

fxj=x1gbj ¼ 1 ð3Þ

and use the normalization
P

jbj ¼ �1, then we get the input dis-
tance function (IDF) formulation (Shephard, 1953, 1970), viz.,

Input distance function : x1 ¼ Aya
Y
j¼2

fxj=x1gbj ð4Þ

Finally, if we normalize b1 = �1 in (1) it can be rewritten as

Input requirement function : x1 ¼ Aya
Y
j¼2

x
bj

j ð5Þ

which is the input requirement function (IRF) introduced by
Diewert (1974).

It is clear from the above that starting from the transforma-
tion function in (1) one can obtain the production function,
the input distance function, and the input requirement function
simply by using different normalizations. No additional assump-
tions are necessary for this. Theoretically, the transformation
function in (1) can be traced back starting from any of these
functions. Thus, the production function, input distance function
and the input requirement function are algebraically equivalent
in the sense that they are all derived from the same transforma-
tion function but use different normalizations. This is true for
flexible functional forms such as the translog which is shown
next.

2.2. Translog transformation function

As before we assume that a producer uses a J inputs x to produce a
single output y. The functional relationship between x and y is ex-
pressed as Af(y,x) = 1, where f(y,x) is assumed to be translog (TL), i.e.,

TL transformation function :

ln f ðy; xÞ ¼ ay ln yþ 1
2
ayy ln y2 þ

X
j

bj ln xj

þ 1
2

X
j

X
k

bjk ln xj ln xk þ
X

j

djy ln xj ln y ð6Þ

where bjk = bkj. Note that we need to impose (J + 2) identifying/nor-
malizing constraints for the model in (6). If one uses the following
normalizations ay = �1, ayy = 0, djy = 0"j = 1, . . . , J in (6) the standard
translog production function is obtained, which is

TL production function :

ln y ¼ a0 þ
X

j

bj ln xj þ
1
2

X
j

X
k

bjk ln xj ln xk þ u ð7Þ

where lnA = a0 + u.
If we rewrite (6) as

ln f ðy; xÞ ¼ ay ln yþ 1
2
ayy ln y2 þ

X
j

bj lnðxj=x1Þ

þ 1
2

X
j

X
k

bjk lnðxj=x1Þ lnðxk=x1Þ þ
X

j

djy lnðxj=x1Þ ln y

þ
X

j

bj

" #
ln x1 þ

X
j

X
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( )
ln xj

" #
ln x1

þ
X

j

djy

" #
ln y ln x1

and use the following normalizations
P

jbj ¼ �1;
P

jbjk ¼ 0;8k;P
jdjy ¼ 0 the input distance function representation is obtained,

which is,

TL IDF :

ln x1 ¼ a0 þ
X
j¼2

bj ln x̂j þ
1
2

X
j¼2

X
k¼2

bjk ln x̂j ln x̂k þ ay ln y

þ 1
2
ayy ln y2 þ

X
j¼2

djy ln x̂j ln yþ u; ð8Þ

where x̂j ¼ xj=x1; j ¼ 2; . . . ; J.
Finally, if we use the following normalizations in (6) b1 = �1,

b1j = 0"j, d1y = 0, the input requirement function is obtained, which
can be written as

2 There are too many papers which use various specifications we refer to in this
paper in the next section. Some of the recent papers in the operation research
literature are: Boussemart et al. (2009), Parelman and Santín (2009), among many
others.
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