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a b s t r a c t

We study stochastic uncapacitated hub location problems in which uncertainty is associated to demands
and transportation costs. We show that the stochastic problems with uncertain demands or dependent
transportation costs are equivalent to their associated deterministic expected value problem (EVP), in
which random variables are replaced by their expectations. In the case of uncertain independent trans-
portation costs, the corresponding stochastic problem is not equivalent to its EVP and specific solution
methods need to be developed. We describe a Monte-Carlo simulation-based algorithm that integrates
a sample average approximation scheme with a Benders decomposition algorithm to solve problems hav-
ing stochastic independent transportation costs. Numerical results on a set of instances with up to 50
nodes are reported.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hub location problems (HLPs) arise in transportation, telecom-
munication and computer networks, where hub-and-spoke archi-
tectures are frequently used to efficiently route commodities
between many origin and destination (O/D) pairs. The performance
of these networks relies on the use of consolidation, switching, or
transshipment points, called hub facilities, where flows from sev-
eral origins are consolidated and rerouted to their destinations,
sometimes via another hub. In HLPs the locations of the hubs as
well as the paths for sending the commodities have to be deter-
mined. Broadly speaking, HLPs consist in locating hubs on a net-
work so as to minimize the total flow cost.

Due to their multiple applications, these problems are receiving
increased attention. Solution methods have been developed for
several variants of HLPs analogous to well-known discrete facility
location problems, such as uncapacitated hub location, p-hub loca-
tion, p-hub center, and hub covering. For each of these classes of
problems, there exist several variants arising from various assump-
tions, such as hub capacities or a specific topological structure for
the hub-and-spoke network. There are two basic assumptions
underlying most HLPs. The first is that commodities have to be rou-
ted via a set of hubs, and thus paths between O/D pairs include at
least one hub facility. The second assumption is that hubs are fully
interconnected with more effective, higher volume pathways that
enable a discount factor s (0 < s < 1) to be applied to all transpor-
tation costs associated to the commodities routed between a pair

of hubs. The reader is refered to Alumur and Kara (2008) and to
Campbell et al. (2002) for recent surveys on HLPs.

The location of hub facilities corresponds to long-term strategic
decisions which are typically made within an uncertain environ-
ment. That is, costs, demands, distances, and other parameters
may change after location decisions have been made. Nevertheless,
standard HLP models treat data as known and deterministic. This
can result in highly sub-optimal solutions given the inherent uncer-
tainty surrounding future conditions. There exist basically two
streams of research dealing with optimization under uncertainty:
stochastic optimization and robust optimization. In stochastic
optimization, it is assumed that the values of the uncertain param-
eters are governed by known probability distributions. In robust
optimization, it is assumed that parameters are uncertain but no
information about their probability distributions is know except
for the specification of intervals containing the uncertain values.

In classical facility location, stochastic models have been widely
investigated over the last four decades. Louveaux (1986, 1993) pre-
sents classical reviews on modeling approaches for stochastic facil-
ity location in which the location of the facilities is considered as a
first-stage decision and the distribution pattern is a second-stage
decision. Some of these models (see Louveaux and Peeters, 1992;
Laporte et al., 1994) consider capacities on the facilities, and facil-
ity size is considered as a first-stage decision. Ravi and Sinha
(2006) propose a stochastic problem in which facilities may be
open in either the first or second stage, while incurring different
installation costs in each stage. The survey by Snyder (2006) covers
both stochastic and robust location models for stochastic location
problems.

To the best of the authors’ knowledge, there exist only three
published articles related to stochastic hub location problems.
Marianov and Serra (2003) focus on stochasticity at the hub nodes
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by representing hub airports as M/D/c queues and limiting through
chance constraints the number of airplanes that can queue at an
airport. The authors present a linear mixed integer programming
(MIP) formulation and propose a heuristic procedure to obtain
feasible solutions for instances with up to 30 nodes. Sim et al.
(2009) introduce the stochastic p-hub center problem and employ
a chance-constrained formulation to model the minimum service-
level requirement. Their model takes into account the variability in
travel times when designing the hub network so that the maxi-
mum travel time through the network is minimized. The authors
present a linear MIP formulation for the problem, under the
assumption that travel times on the arcs are independent normal
random variables. They also propose several heuristics to obtain
feasible solutions for instances with up to 25 nodes. Yang (2009)
presents a stochastic model for air freight hub location and flight
route planning under seasonal demand variations. The author
models the problem as a two-stage stochastic program with re-
course, in which the location of hub facilities is considered as a
first-stage decision and the planning of flight routes as a second-
stage decision. Stochasticity on demands as well as on discount
factors on the arcs of the network is considered. Moreover, the
model allows direct connections between non-hub nodes. A MIP
formulation for the problem is presented under the assumption
that demand is governed by a discrete probability distribution
involving only three possible scenarios. A case study from a
10-node air freight market in Taiwan and China is also described.

One of the problems that have received most attention in deter-
ministic hub location is the Uncapacitated Hub Location Problem
with Multiple Assignments (UHLPMA). In this problem, the number
of required hubs to locate is not known in advance, but a fixed set-
up cost for each hub facility is considered. The capacity of the hubs
and of the links of the hub network is unbounded. It is assumed
that flows originating at the same node but having different desti-
nation points can be routed through different sets of hub nodes, i.e.
a multiple assignment pattern applies. The objective is to minimize
the sum of the hub fixed costs and demand routing costs. The best
known formulations for the UHLPMA, in terms of LP relaxation
bounds, are those of Hamacher et al. (2004) and of Marín et al.
(2006), whereas the best exact algorithms are those of Cánovas
et al. (2007), Camargo et al. (2008) and Contreras et al. (2010a).
In particular, the Benders decomposition algorithm of Contreras
et al. (2010a) can efficiently solve large-scale UHLPMA instances
with up to 500 nodes.

In the UHLPMA, demand between O/D pairs as well as transpor-
tation costs are treated as known and deterministic. However, in
real applications future demand is not known in advance and only
a forecast may be available. Transportation costs between node
pairs are usually defined to be proportional to the distance be-
tween nodes. However, transportation costs are also intimately re-
lated to the price of resources (fuel, electricity, raw materials) used
to provide the actual transportation of demand, which may be
highly uncertain. Other sources of uncertainty in transportation
costs may be due to: (i) uncertainty in travel distances, (ii) traffic
and congestion, (iii) tariff changes by outsourcing companies, and
(iv) link failures. In this paper we study how the UHLPMA can be
modeled as a two-stage integer stochastic program with recourse
in the presence of uncertainty on demands and transportation
costs. In particular, we introduce three different stochastic versions
of the UHLPMA. The first is the Uncapacitated Hub Location Problem
with Stochastic Demands (UHL-SD) in which demands between O/D
pairs are considered to be stochastic. The second is the Uncapaci-
tated Hub Location Problem with Stochastic Dependent Transportation
Costs (UHL-SDC) where uncertainty is given by a single parameter
influencing transportation costs. It is assumed that this parameter
equally affects the transportation costs for all links of the network.
The third is the Uncapacitated Hub Location Problem with Stochastic

Independent Transportation Costs (UHL-SIC) in which the transpor-
tation costs are also stochastic. However, this problem considers
the more general case in which the uncertainty of transportation
costs is independent for each link of the network. We show that
both UHL-SD and UHL-SDC are equivalent to their associated
Expected Value Problem (EVP) in which uncertain transportation
costs are replaced with their expected value (see Birge and
Louveaux, 1997). However, this equivalence does not hold for the
UHL-SIC.

We use a Monte-Carlo simulation-based method, known as the
Sample Average Approximation (SAA) scheme (Kleywegt et al.,
2001), to solve UHL-SIC problems with continuous distance distri-
butions, and therefore, an infinite number of scenarios. This meth-
od can also be applied to UHL-SIC problems with a finite but very
large number of scenarios. We integrate a Benders decomposition
scheme to solve the corresponding SAA problems.

The remainder of this paper is organized as follows. Section 2
formally introduces two-stage stochastic models for the consid-
ered problems. Section 3 describes our solution method for the
UHL-SIC. Computational results are presented in Section 4, fol-
lowed by conclusions in Section 5.

2. Stochastic uncapacitated hub location problems

Before presenting the stochastic uncapacitated hub location
models under study, we describe their deterministic counterpart,
the UHLPMA. Let G = (Q,A) be a complete digraph, where Q is the
set of nodes and A is the set of arcs. Let also H # Q represent the
set of potential hub locations, and K be the set of commodities
whose origin and destination points belong to Q. For each com-
modity k 2 K, define Wk as the amount of commodity k to be rou-
ted from the origin o(k) 2 Q to the destination d(k) 2 Q. For each
node i 2 H, fi is the fixed set-up cost for locating a hub at node i.
The transportation cost between nodes i and j is defined as cij = cdij,
where dij is the distance between nodes i and j, which is assumed
to satisfy the triangle inequality, and c is the resource cost per unit
distance. All costs relate to the same planning horizon.

Given that hub nodes are fully interconnected and distances sat-
isfy the triangle inequality, every path between an origin and a des-
tination node will contain at least one and at most two hubs. For
this reason, paths between two nodes are of the form (o(k), i, j,d(k)),
where (i, j) 2 H � H is the ordered pair of hubs to which o(k) and
d(k) are allocated, respectively. Therefore, the unit transportation
cost of routing commodity k along path (o(k), i, j,d(k)) is given by
Fijk = vco(k)i + scij + dcjd(k), where v, s, and d represent the collection,
transfer and distribution costs along the path. To reflect economies
of scale between hub nodes, we assume that s < v and s < d. The
UHLPMA consists in locating a set of hubs and in determining the
routing of commodities through the hub nodes, with the objective
of minimizing the total set-up and transportation cost.

We define binary location variables zi, i 2 H, equal to 1 if and
only if a hub is located at node i. We also introduce binary routing
variables xijk, k 2 K and (i, j) 2 H � H, equal to 1 if and only if com-
modity k transits via a first hub node i and a second hub node j. Fol-
lowing (Hamacher et al., 2004), the UHLPMA can be stated as
follows:

minimize
X
i2H

fizi þ
X
i2H

X
j2H

X
k2K

WkFijkxijk ð1Þ

subject to
X
i2H

X
j2H

xijk ¼ 1 k 2 K ð2ÞX
j2H

xijk þ
X

j2Hnfig
xjik 6 zi i 2 H; k 2 K ð3Þ

xijk P 0 i; j 2 H; k 2 K ð4Þ
z 2 BjHj: ð5Þ
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