
Stochastics and Statistics

Bad luck when joining the shortest queue

J.P.C. Blanc *

Tilburg University, Department Econometrics and Operations Research, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Received 24 July 2007; accepted 24 January 2008
Available online 5 February 2008

Abstract

A frequent observation in service systems with queues in parallel is that customers in other queues tend to be served faster than those
in one’s own queue. This paper quantifies the probability that one’s service would have started earlier if one had joined another queue
than the queue that was actually chosen, for exponential multiserver systems with queues in parallel in which customers join one of the
shortest queues upon arrival and in which jockeying is not possible.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a service system with c P 2 parallel servers. Separate queues are formed in front of each server. Throughout,
queues are defined as including the customer in service, if there is one. Each queue is served in a FIFO order. Customers
arrive according to a Poisson process at rate k. They join one of the shortest queues upon arrival and stay in the queue of
their choice until they have been served. Then, they leave the system. This means that jockeying (see Zhao and Grassmann,
1990) is not considered. An example of a parallel service system in which jockeying is hardly possible is a toll booth at an
autostrada (see Conolly, 1984). Services performed by server j have an exponentially distributed duration with a mean of
1=lj, j ¼ 1; . . . ; c. Customers in such systems often notice that customers in other queues are being served faster than those
in their own queue, and that they are overtaken by customers that arrived later. Of course, this phenomenon may be due to
different skills, and hence different service rates, among the servers. If customers are aware of such differences, joining the
shortest queue may not be the optimal decision. But even if the service rates of all servers are equal, this phenomenon fre-
quently occurs. A simple explanation is found by considering the situation that a customer meets an equal number of cus-
tomers n P 1 in each of the queues upon arrival. Then, by the lack of memory of the exponential service time distributions
and the symmetry of the system, each queue has the same probability of becoming the queue that is soonest exempted of its
n customers. Hence, the arriving customer has in this situation a probability of ðc� 1Þ=c of bad luck, in the sense that he
does not join the queue in which his service would have started earliest.

The aim of the present paper is to quantify the probability of bad luck for systems in which customers join one of the
shortest queues upon arrival. For the computations reported in this paper we have used the power-series algorithm to com-
pute the stationary queue length distribution as described in Blanc (1987a,b, 1992) for the shortest queue system. The effi-
ciency of the algorithm is further enhanced in Blanc (1993). Other approaches to shortest queue systems can be found,
among others, in Haight (1958), Flatto and McKean (1977), Halfin (1985), Rao and Posner (1987), Hanqin and Rongxin
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(1989), Adan et al. (1990, 1994) and Wu and Posner (1997). Winston (1977), Johri (1989) and Hordijk and Koole (1990)
consider the optimality of the shortest queue discipline.

The organization of the rest of this paper is as follows. Section 2 considers the probability of bad luck for symmetric
shortest queue systems. Section 3 contains a discussion of this probability for asymmetric shortest queue systems with dif-
ferent service rates among the servers. Section 4 is devoted to systems with both customers who join a shortest queue and
customers who are dedicated to specific servers. A conclusion can be found in Section 5.

2. Symmetric systems

Consider a symmetric system in the sense that the service rates of all servers are equal, lj ¼ l, j ¼ 1; . . . ; c, and that an
arriving customer joins one of the shortest queues with equal probabilities. The load of this system is defined as q ¼: k=ðclÞ,
and for stability it is assumed that q < 1. Given that a customer joins a queue in which n customers were already present,
the waiting time W n of this new customer has an Erlang distribution with mean n=l and consisting of n phases, n ¼ 1; 2; . . . ;
by the assumption of exponential service times. The conditional probabilities of bad luck given the state of the system upon
arrival of a customer and the queue that is joined by this customer are defined as follows. Suppose the system is in state
ðn1; . . . ; ncÞ, with nk the length of queue k, k ¼ 1; . . . ; c, and the arriving customer joins queue j, then /jðn1; . . . ; ncÞ is the
probability that some server i; i–j, will be the first to complete service of its current ni customers. This probability can be
determined from the relation

/jðn1; . . . ; ncÞ ¼: Prf min
i¼1;...;c

W ni < W njg; j ¼ 1; . . . ; c; ð2:1Þ

where W ni ; i ¼ 1; . . . ; c represent independent, Erlang distributed random variables with mean ni=l and consisting of ni

phases. To keep notation simple this probability will be evaluated for the case j ¼ 1; the other cases follow by interchang-
ing the indices. Clearly, if n1 ¼ 0 an arriving customer has zero waiting time, and, hence, for all n2; . . . ; nc 2 N,

/1ð0; n2; . . . ; ncÞ ¼ 0: ð2:2Þ

Next, let n1 P 1. By conditioning on the length y of the n1 services in queue 1 this conditional probability becomes, for
n2; . . . ; nc P 1,

/1ðn1; . . . ; ncÞ ¼ 1�
Z 1

0

PrfW n2
> y; . . . ;W nc > ygdPrfW n1

6 yg: ð2:3Þ

By the independence of the services by the various servers this can be written as

/1ðn1; . . . ; ncÞ ¼ 1�
Z 1

0

PrfW n2
> yg � � �PrfW nc > ygdPrfW n1

6 yg: ð2:4Þ

Using the explicit expressions for the Erlang distribution and its density it follows that

/1ðn1; . . . ; ncÞ ¼ 1�
Z 1

0

Yc

j¼2

Xnj�1

ij¼0

ðlyÞij
ij!

e�ly

" #
l
ðlyÞn1�1

ðn1 � 1Þ! e�ly dy: ð2:5Þ

By interchanging the order of summation and integration this expression can be written as

/1ðn1; . . . ; ncÞ ¼ 1�
Xn2�1

i2¼0

� � �
Xnc�1

ic¼0

1

ðn1 � 1Þ!i2! � � � ic!

Z 1

0

lðlyÞn1þi2þ���þic�1e�cly dy: ð2:6Þ

This integral can be evaluated as, for n1; . . . ; nc P 1,

/1ðn1; . . . ; ncÞ ¼ 1�
Xn2�1

i2¼0

� � �
Xnc�1

ic¼0

ðn1 þ i2 þ � � � þ ic � 1Þ!
ðn1 � 1Þ!i2! � � � ic!

1

cn1þi2þ���þic
: ð2:7Þ

In the special case that all queues are equally short this probability becomes, for n P 1,

/1ðn; . . . ; nÞ ¼ 1�
Xn�1

i2¼0

� � �
Xn�1

ic¼0

ðnþ i2 þ � � � þ ic � 1Þ!
ðn� 1Þ!i2! � � � ic!

1

cnþi2þ���þic
¼ 1� 1

c
¼ c� 1

c
; ð2:8Þ

which is immediate for symmetrical systems, as noted in Section 1. Table 1 shows the conditional probability of bad luck
/1ðn1; n2Þ for customers joining queue 1 in the case c ¼ 2, for n1; n2 ¼ 1; . . . ; 6. Note that the values /1ðnþ m; nÞ;
n P 1; m P 1, are irrelevant since an arriving customer will join the shorter queue, and, hence, not queue 1 in these states.
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