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Abstract

We study the mutation operation of the differential evolution algorithm. In particular, we study the effect of the scaling
parameter of the differential vector in mutation. We derive the probability density function of points generated by muta-
tion and thereby identify some drawbacks of the scaling parameter. We also visualize the drawbacks using simulation. We
then propose a crossover rule, called the preferential crossover rule, to reduce the drawbacks. The preferential crossover
rule uses points from an auxiliary population set. We also introduce a variable scaling parameter in mutation. Motivations
for these changes are provided. A numerical study is carried out using 50 test problems, many of which are inspired by
practical applications. Numerical results suggest that the proposed modification reduces the number of function evalua-
tions and cpu time considerably.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The global optimization problem in this paper
follows the form:

minimize f ðxÞ subject to x 2 X; ð1Þ
where x is a continuous variable vector with domain
X � Rn, and f ðxÞ:X 7!R is a continuous real-valued
function. The domain X is defined by specifying
upper (uj) and lower (lj) limits of each component
j. We denote the global optimal solution by x*, with
its corresponding global optimal function value
f(x*) or f* for a short hand notation. The paper is
concerned with the differential evolution (DE) algo-

rithm [1]. The DE algorithm is a population algo-
rithm [2] and is purely heuristic. All population
direct search methods use a population set S. The
initial set

S ¼ fx1; x2; . . . ; xNg ð2Þ
consists of N random points in X. A contraction
process is then used to drive these points to the
vicinity of the global minimizer. The contraction
process involves replacing bad point(s) in S with
better point(s), per generation. In particular, DE at-
tempts to replace all points in S by new points at
each generation. It progresses in an epoch or era
base. During each epoch, N new function values
are evaluated on N trial points. Trial points are gen-
erated using mutation and crossover. A brief
description of DE is given below.
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2. A brief description of DE

The DE algorithm attempts to replace each point
in S with a new better point. Therefore, in each gen-
eration, N competitions are held to determine the
members of S for the next generation. The ith
(i = 1,2, . . . ,N) competition is held to replace xi in
S. Considering xi as the target point, a trial point
yi is found from two points (parents), the point xi,
i.e., the target point and the mutated point x̂i deter-
mined by the mutation operation. In its mutation
phase, DE randomly selects three distinct points
xp(1), xp(2) and xp(3), with replacement, from the cur-
rent set S. None of these points should coincide with
the current target point xi. The weighted difference
of any two points is then added to the third point
which can be mathematically described as

x̂i ¼ xpð1Þ þ F ðxpð2Þ � xpð3ÞÞ; ð3Þ

where F > 0 is a scaling parameter, and xp(1) is
known as the ‘base vector’. If the point x̂i 62 X then
the mutation operation is repeated. The trial point
yi is found from its parents xi and x̂i using the fol-
lowing crossover rule:

yj
i ¼

x̂j
i if Rj

6 CR or j ¼ I i;

xj
i if Rj > CR and j 6¼ I i;

(
ð4Þ

where Ii is an integer randomly chosen with replace-
ment from the set I, i.e., Ii 2 I = {1,2, . . . ,n}; the
superscript j represents the jth component of respec-
tive vectors; Rj 2 (0,1), drawn uniformly for each j.
The ultimate aim of the crossover rule (4) is to ob-
tain the trial point yi with components coming from
the components of the target point xi and mutated
point x̂i. This is ensured by introducing CR and
the set I. Notice that for CR = 1 the point yi is the
replica of the mutated point x̂i. The effect of CR

has been studied in [2,3] and it was found that
CR = 0.5 is a good choice. The targeting process
continues until all members of S are considered.
After all N trial points yi have been generated,
acceptance is applied. In the acceptance phase, the
function value at the trial point, f(yi), is compared
to f(xi), the value at the target point. If f(yi) < f(xi)
then yi replaces xi in S, otherwise, S retains the ori-
ginal xi. Reproduction (mutation and crossover)
and acceptance continue until some stopping condi-
tions are met. It can be seen from (3) that mutation
is the core point generation mechanism of DE. This
operation calculates the coordinates of new points.
The crossover operation (4) chooses the coordinates

of a trial point from the known coordinates of two
points using a distribution controlled by CR.

An important issue that needs to be addressed is
the value of the scaling parameter F in (3). To the
best of our knowledge, no optimal choice of the scal-
ing parameter F has been suggested in the literature
of DE. In the original DE [1], F was chosen to lie in
(0, 2]. Other empirical choices of F were values close
to 0.8 [4] and to 1 [2]. In a recent study using 50 test
problems the value 0.5 was found to be a good
choice [3]. It appears that the choice of F depends
upon the problem at hand. Indeed, we observed that
a value of F which can be a good choice for a prob-
lem but a bad choice for a different problem in the set
of 50 problems. Besides, our numerical experiments
found that mutation often generates trial points out-
side the feasible region X and the number of points
that fall outside X varies from problem to problem.
We also observed that the larger the F, the higher the
number of such points is. On the other hand, the
smaller the F, the higher the probability of DE get-
ting trapped in a local minimizer. The choice of F

is therefore a delicate issue.
In this paper, we derive the probability density

function of the mutated points and show how these
points can fall outside X. We also visualize this phe-
nomenon by simulation. We then propose an alter-
native approach that can dispense with the fixed
choice of F. Firstly, we replace the fixed scaling
parameter value with a variable one and secondly
we introduce the preferential crossover rule. We also
introduce an auxiliary set of points. These points are
normally discarded in DE. The preferential cross-
over rule uses the auxiliary set in generating trial
points within the feasible region.

This paper is divided into seven sections. The
next section derives the probability density function
(pdf) of the point generation using (3). In Section 4,
we present the simulation of mutated points to visu-
alize the effect of F. In Section 5, we present the new
algorithm. Results are presented in Section 6 and
conclusions are made in Section 7.

We denote the pdf of a random variable (RV),
say X by fX and the joint pdf for RVs, say X and
Y by fXY.

3. Probability density of trial points

In this section, we derive the pdf of mutated points
generated by (3). We use F = 1 for this purpose. The
motivation for this choice is as follows. If we take
F > 1 then the differential vector (xp(2) � xp(3)) in (3)
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