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a b s t r a c t

We consider a very general case of the facility layout problem, which allows incorporating various
aspects appearing in real life applications. These aspects include loose requirements on facilities’ foot-
prints, each of which only needs to be of rectangular shape and can optionally be restricted concerning
the surface area or the aspect ratio. Compared to former approaches other generalizations of practical rel-
evance are multiple, not necessarily rectangular workshops, exclusion zones in workshops, predefined
positions of facilities, the consideration of aisles, and the adherence of further restrictions such as the
enforced placement of certain facilities next to an exterior wall or a minimum distance between certain
pairs of facilities. Although different objectives could be applied, we especially focus on the most relevant
one in practice, the minimization of transportation costs.

We show that this problem can heuristically be solved using an extension of the Slicing Tree and Tabu
Search (STaTS) based approach. The application of this algorithm on practical data shows its effective-
ness. The paper concludes with a step-by-step guide for the application of STaTS in practice.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction and problem description

1.1. The facility layout problem

A facility layout problem (FLP) is concerned with the question of
positioning facilities to locations. This very general problem is usu-
ally specified in different ways. In the past many approaches for
the numerous variants of layout planning have been developed.
Due to the complexity and peculiarities of the problem, many of
these approaches are based on simplifying assumptions. However,
a large number of practical applications does not fulfill all assump-
tions proposed by the various models.

In order to overcome the disadvantages of a too specified model,
let us propose a more general framework of a FLP, representing a
larger number of practical specifications at the cost of the simplic-
ity of the model.

There are n rectangular facilities each of which with given surface
area and a given set of allowed shapes. These facilities are to be posi-
tioned in one out of several right-angled workshops with given dimen-
sions so that no two facilities overlap. Alternatively the dimension of a
workshop can also be unrestricted which leads to an arrangement of
facilities relative to each other.

This framework requires not only deciding on the position of
the facilities, but also on their exact shape. Let us formalize this
problem using the Euclidean plane R2 with the Cartesian coordi-
nate system. The abscissa will be denoted by x and the ordinate
by y. Then the following input data has to be given for the facility
layout problem.

– A closed, not necessarily connected set W # R2 describing the
available space for placing facilities. W represents the work-
shop(s). As mentioned above, we assume each workshop to
be of right-angled shape.The restriction of right-angled work-
shop shapes is not very restrictive as any closed subset of R2

can be approximated arbitrarily accurate by right-angled
areas. However, for practical applications the number of ‘‘cor-
ners” should not exceed a certain number, say 10. So preva-
lent shapes such as rectangles, L-shapes, or Z-shapes are
allowed.

– n facilities, each of which has a given surface area aðiÞ 2 R, for all
i 2 {1,2, . . . ,n}.

– For each facility i, there is a set S(i) of (rectangular) shapes that
can be adopted by this facility. These shapes can be denoted by
the potential positions of i’s top right corner relative to the bot-
tom left corner. That means, under the assumption that the bot-
tom left corner is placed on the origin (0,0), each element of S(i)
describes an allowed position of the top right corner, i.e.
SðiÞ# fðx; yÞ 2 R2jx � y ¼ aðiÞg
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– Optionally, there might be further restrictions concerning the
placement of facilities or an objective function (both to be
described below).

Given these input data, the FLP is concerned with the question
of finding a position and a concrete shape for each facility. The po-
sition of the facility can be characterized by the position of its bot-

tom left corner, denoted by pi ¼ pi
x; p

i
y

� �
2 R2. The exact shape is

then determined by the position of the top right corner (in relation

to the bottom left corner), denoted by si ¼ si
x; s

i
y

� �
2 SðiÞ. The ex-

panse covered by a facility is given by EðiÞ :¼ x; yð Þ 2 R2jpi
x 6

�
x < pi

x þ si
x; pi

y 6 y < pi
y þ si

yg. The FLP is now to find a mapping

/ : 1;2; . . . ; nf g ! R2 � R2;

/ðiÞ# pi; si
� �

;

s:t: EðiÞ# W 8i 2 1;2; . . . ; nf g;
EðiÞ \ EðjÞ ¼ ; 8i – j; i; j 2 1;2; . . . ;nf g:

The first restriction ensures that the facilities are placed within
the workshops, whereas the second restriction prohibits overlap-
ping facilities.

In case of unlimited workshop space, finding a feasible solu-
tion is easy. However, even if the available space in the work-
shop(s) considerably exceeds the sum of the required space of
all facilities, a feasible solution might not exist, or might be hard
to obtain.

Several objectives have been formulated for the FLP. Among the
most common ones are the minimization of transportation costs
between facilities or the minimization of the smallest rectangle
containing all facilities (especially if W = R2Þ. We will focus on
the minimization of transportation costs as follows. For each or-
dered pair (i, j) of facilities, a certain flow fij 2 R and material trans-
portation costs per unit and distance cij 2 R are given. Furthermore
a metric d : R2 � R2 ! R is given, which allows us to determine the
distance dij between two facilities i and j by means of the distance

of their central points: dij :¼ d
�

si
x þ

pi
x

2 ; s
i
y þ

pi
y

2

�
; sj

x þ pj
x

2 ; s
j
y þ

pj
y

2

� �� �
.

Note that dij itself defines a pseudo-metric on the set of connected
subsets of R2. Using these data, the objective of the FLP is

min F ¼
Xn

i¼1

Xn

j¼1
i–j

dij � fij � cij:

To the very best of our knowledge, no paper has been presented
which proposes a solution method for this general FLP. For
W = R2, the Slicing Tree and Tabu Search (STaTS) based approach
of Scholz et al. (2009) can be applied. We will extend this approach
in order to cope with right-angled workshops and in order to con-
sider the following additional restrictions that might appear in real
life situations.

1. Some facilities must be placed in certain areas of the work-
shops (e.g. because of different ceiling heights, or an inven-
tory must be placed at a certain point). If W(i) describes
the area in which facility i may be placed, we introduce the
restriction

EðiÞ# WðiÞ:

2. All facilities and workshop doors must be connected via
aisles. As doors can be modeled as facilities with a fixed posi-
tion, we can w.l.o.g. assume that only facilities have to be
connected via aisles. This leads to the restriction

8i; j 2 1;2; . . . ;nf g9D # W n
[

k
EðkÞ :

EðiÞ [ EðjÞ [ D is a connected space:

For practical applications we might need to force that the
aisles have a minimum width, i.e. only those D can be chosen
that ensure the minimum width A (e.g. for forklifts).

3. Some facilities must be placed next to an exterior wall (e.g.
because of an exhaust air conduit). Let Wall # 1;2; . . . ;nf g be
the set of facilities to be placed next to a wall. Then we force

inf d ðx; yÞ; ðx0; y0Þð Þjðx; yÞ 2 EðiÞ; ðx0; y0Þ R Wf g ¼ 0 8i 2Wall:

Note that this restriction makes only sense if W is bounded
somewhere. We have used the same term d for the metric
as in the objective function. However, it would be possible
to apply different metrics.

4. For some pairs of facilities, a separation distance dmin has to
be respected. A reason for that could be dust (oscillation)
sensitive and dust raising (oscillation causing) machines.
We consider this fact using the following restriction in which
BadNeighbors � 1;2; . . . ;nf g � 1;2; . . . ;nf g describes all pairs
of facilities with separation distance.

min d ðx; yÞ; ðx0; y0Þð Þjðx; yÞ 2 EðiÞ; ðx0; y0Þ 2 EðjÞf g
P dmin 8ði; jÞ 2 BadNeighbors:

Put together, we are to solve the following optimization
problem:

min
/

F ¼
Xn

i¼1

X
j¼1
i–j

dij � fij � cij;
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EðiÞ \ EðjÞ ¼ ; 8i – j; i; j 2 1;2; . . . ;nf g;
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[
k

EðkÞ : EðiÞ [ EðjÞ [ D is a

connected space;
inf d ðx; yÞ; ðx0; y0Þð Þjðx; yÞ 2 EðiÞ; ðx0; y0Þ R Wf g ¼ 0 8i 2Wall;

min d ðx; yÞ; ðx0; y0Þð Þjðx; yÞ 2 EðiÞ; ðx0; y0Þ 2 EðjÞf gP dmin

8ði; jÞ 2 BadNeighbors:

Note that this problem formulation is not restricted to the posi-
tioning of machines within manufacturing workshops. It can be ap-
plied to other applications of FLPs, e.g. when producing printed
circuit boards. In such a case the circuit board is regarded as a
workshop and transistors, resistors, etc. correspond to facilities.
Circuit paths can be modeled as aisles.

1.2. Literature review

Koopmans and Beckmann (1957) propose a quadratic assign-
ment problem in which n equal sized facilities have to be placed
on n equal sized locations. The objective is to minimize transporta-
tion costs between facilities. This model is often referred to be the
common classical layout planning problem. It is a special case of
the above-mentioned problem. Any of the n equal sized locations
can be modeled as a workshop, which has the size of exactly one
of the n facilities. As the quadratic assignment problem is NP-hard,
our general FLP framework is NP-hard as well.

Bazaraa (1975) stated a generalized quadratic assignment prob-
lem, which incorporates facilities with unequal areas. In his model,
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