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In this paper, we describe an interactive procedural algorithm for convex multiobjective programming
based upon the Tchebycheff method, Wierzbicki’s reference point approach, and the procedure of Micha-
lowski and Szapiro. At each iteration, the decision maker (DM) has the option of expressing his or her
objective-function aspirations in the form of a reference criterion vector. Also, the DM has the option
of expressing minimally acceptable values for each of the objectives in the form of a reservation vector.
Based upon this information, a certain region is defined for examination. In addition, a special set of
weights is constructed. Then with the weights, the algorithm of this paper is able to generate a group
of efficient solutions that provides for an overall view of the current iteration’s certain region. By modi-
fication of the reference and reservation vectors, one can “steer” the algorithm at each iteration. From a
theoretical point of view, we prove that none of the efficient solutions obtained using this scheme impair
any reservation value for convex problems. The behavior of the algorithm is illustrated by means of
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graphical representations and an illustrative numerical example.
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1. Introduction

When facing a real decision problem, a decision maker (DM)
must often deal with several conflicting objectives. In such cases,
the traditional optimization approach, in which a single objective
is optimized subject to a given set of constraints, is no longer appli-
cable. Instead, a multiobjective model is to be formulated and
solved. Because of the rarity of solutions that optimize all objec-
tives simultaneously, multiobjective programming utilizes effi-
cient solutions. These are solutions from which no objective can
be improved without deteriorating at least one of the others. Being
“trade-off efficient” in this way, the set of all efficient solutions is
precisely the set of all candidates for optimality. But as for which
is to be optimal, this is for the DM to decide, and this often involves
a contemplative process.

As outlined in Hwang and Masud (1979), procedures for solving
multiobjective decision problems can be grouped into three cate-
gories depending upon whether preference information is elicited
from the DM before, after, or during the solution process. In the
“before” category are a priori methods. In these methods, after elic-
iting information from the DM, an optimization problem is solved
to compute a solution. A difficulty of a priori methods is that it is
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hard to know in advance with sufficient accuracy the information
required by the optimization problem for it to produce a final solu-
tion (an optimal solution or a solution close enough to one to qual-
ify in its stead). Also, with these methods, there is the question
about being able to recognize a final solution even when con-
fronted with one without knowing more about the efficient set.
In the “after” category are a posteriori or, as called by Cohon
(1985), generating methods. In these methods, a comprehensive
set of efficient solutions (or in the best case the whole efficient
set) is generated and shown to the DM. Then, the DM is to choose
his or her most preferred solution from the set. The drawback of
these methods is that usually a great number of efficient solutions
has to be generated, and it can be extremely hard for the DM to
manage all of the information.

In the “during” category are interactive procedures. Interactive
procedures are designed to overcome the difficulties encountered
in a priori and a posteriori methods. In interactive procedures,
phases of information elicitation are interleaved with phases of
computation. In the beginning, the information exchanged be-
tween the DM and procedure is general, but then becomes more lo-
cal in character as the procedure continues. In this way, interactive
procedures have two main features: (a) they help a DM learn about
a problem while solving it, and (b) they put to work iteratively any
new insights gained during the solution process to help the DM
navigate to a final solution. Prominent interactive procedures
include STEM by Benayoun et al. (1971), the Zionts-Wallenius
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procedure (1976), Wierzbicki’s reference point method (1980),
interactive goal programming (Spronk (1981) for instance), the
Tchebycheff method of Steuer and Choo (1983), Pareto Race by
Korhonen and Wallenius (1988), and the bi-reference procedure
of Michalowski and Szapiro (1992). Others that can be mentioned
are the light beam search method of Jaszkiewicz and Stowinski
(1999), Miettinen’s NIMBUS (1999), and the normal vector identi-
fication approach of Yang and Li (2002).

The real forces behind so many interactive procedures have
been the many different types of problems that lend themselves
to multiple criteria analysis and the fact, due to the differences in
the procedures, that the procedure to use in a given instance is typ-
ically application and decision-making style of the user dependent.
Consequently, there has been a need for today’s many interactive
procedures. From the cognitive point of view, interactive proce-
dures basically differ from one another in the way information is
asked of the DM at each iteration. Four styles can be differentiated.
One asks the DM to specify local tradeoffs or marginal rates of sub-
stitution between the objectives. Another asks the DM to select
from several solution candidates at each iteration. A third asks
the DM to specify target or aspiration levels for the different objec-
tives, and a fourth asks the DM to classify the objectives, for in-
stance, as to which are to be improved, which are permitted to
become relaxed, and which are to be held at their current levels
on the next iteration. Naturally, researchers have thought of con-
solidating procedures. There have been attempts to create global
formulations such as by Gardiner and Steuer (1994) and Luque
et al. (in press), and also to design combined implementations such
as by Antunes et al. (1992) and Caballero et al. (2002b). But mostly
these have involved procedure-switching. By procedure-switching,
we mean giving to the user the option to switch to any procedure
on any iteration. For example, a user may choose to start with one
procedure on the first iteration, switch to another for the second
iteration, switch to a third for the third iteration, and so forth.
But this significantly increases the cognitive burden when, if any-
thing, we should be going in the opposite direction.

Primarily motivated by the Tchebycheff method of Steuer and
Choo (1983), the reference point method of Wierzbicki (1980),
and the bi-reference point procedure of Michalowski and Szapiro
(1992), we present the modified interactive Chebyshev algorithm
(MICA) of this paper.! In one sense, MICA is similar to the Tcheby-
cheff method in that it conducts multiple probing and uses “over-
sampling/filtering” techniques when developing each iteration’s
group of solutions to be presented to the DM. But MICA departs from
the Tchebycheff procedure in the way the neighborhoods of the effi-
cient set that are to be examined at each iteration are defined,
shifted, contracted, and sampled. In the Tchebycheff method, the
neighborhoods are defined, shifted, and contracted by manipulating
subsets in weight space. Unfortunately, being in weight space, these
manipulations are not very intuitive, and there is no intention of
pursuing them further here. Rather, the neighborhoods to be ex-
plored in MICA are designed to be controlled by an iteratively adjust-
able aspiration criterion vector and an iteratively adjustable
reservation vector. In this way, the aspiration and reservation vec-
tors of a given iteration define the “frame” that contains the neigh-
borhood of the efficient set to be explored on that iteration. And by
adjusting the vectors, the neighborhoods can be shifted and con-
tracted one iteration to the next in search of a final solution.

With regard to the sampling of the neighborhoods, it is to be
pointed out that MICA possesses a special technical feature. The
technical feature involves the way in which the weight vectors
used to sample the neighborhoods are generated. As shown, they

1 We use the term Chebyshev to stress MICA’s relationship to, yet differences from,
the Tchebycheff method of 1983.

are specially generated to ensure that no reservation level of any
objective is ever violated during the sampling process without ever
having to include any reservation level in the constraint set of the
program used to carry out the sampling operations.

There is also another item that arises in the paper. It stems from
the number of procedures that currently comprise the field of
interactive multiobjective programming. Even though the posses-
sion of many procedures is generally considered a strength of
interactive multiobjective programming, things could well be dif-
ferent in the future with the field ultimately becoming dominated
by a much smaller number of procedures, each capturing the
power of several of today’s procedures without incurring a cogni-
tive burden greater than any of the procedures singly. As we will
see, in taking a step in this direction, MICA shows that at least
some of this is possible.

The paper is organized as follows. Section 2 sets forth the prob-
lem to be addressed and reviews some background concepts. Be-
cause MICA draws upon features from the Tchebycheff method,
Wierzbicki’s aspiration criterion vector method, and the bi-refer-
ence procedure of Michalowski and Szapiro, these procedures are
overviewed in Section 3. The basic philosophy of MICA is outlined
in Section 4 along with details about how weight vectors can be
generated so not to impair any reservation levels in the sampling
process. A step-by-step description of MICA is given in Section 5.
An example illustrating the operation of MICA comprises Section 6,
and Section 7 brings the paper to a close with concluding remarks.
A proof of the main theorem of the paper is given in Appendix A.

2. Formulation and background concepts

MICA is designed for the solution of the (convex) multiobjective
problem

max f(x) = (h(x),....fi(®))

subject to x € X

(1)

in which all f; are continuous and (of course) concave, and X c R",
the feasible region in decision space, is closed, bounded and (of
course) convex. Being a multiobjective problem, there is also
Z C R*, the feasible region in criterion space, where Z = {z =
f(x)|x € X}. In decision space, X € X is efficient if and only if there
does not exist another xe€X such that f(x) > f(X) and
f(x) # f(X). Then, in criterion space, criterion vector Z € Z is non-
dominated if and only if there exists an x € X such that z = f(x)
and X is efficient. The set of all efficient points is called the efficient
set and is designated E. The set of all nondominated criterion vec-
tors is called the nondominated set. Also, in decision space, X € X is
weakly efficient if and only if there does not exist another X € X such
that f(x) > f(X). Then, in criterion space, criterion vector zZ € Z is
weakly nondominated if and only if there exists an X € X such that
z = f(x) and x is weakly efficient. Note that the set of all weakly effi-
cient points subsumes all efficient points.

Ideal and nadir criterion vectors, z* and z"¢, whose components
are given by

7 =maxfix) (i=1,....k (2)
Zid — minfi(x) (i=1....k) 3)

are often of interest in multiobjective programming. One use of
them, should z'™ be available, would be to form the intervals
[z, z:], 1 <i<k, so as to frame a problem in the sense that no
optimal solution will have any component outside its specified
interval. Unfortunately, in many problems, nadir criterion vectors
with all components known to be correct are difficult to obtain.
While there is now the special algorithm by Alves and Costa
(2009) for exactly computing nadir criterion values in multiobjec-
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