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a b s t r a c t

The traveling tournament problem (TTP) consists of finding a distance-minimal double round-robin tour-
nament where the number of consecutive breaks is bounded. For solving the problem exactly, we propose
a new branch-and-price approach. The starting point is a new compact formulation for the TTP. The cor-
responding extensive formulation resulting from a Dantzig-Wolfe decomposition is identical to one given
by Easton, K., Nemhauser, G., Trick, M., 2003. Solving the traveling tournament problem: a combined
interger programming and constraint programming approach. In: Burke, E., De Causmaecker, P. (Eds.),
Practice and Theory of Automated Timetabling IV, Volume 2740 of Lecture Notes in Computer Science,
Springer Verlag Berlin/Heidelberg, pp. 100–109, who suggest to solve the tour-generation subproblem
by constraint programming. In contrast to their approach, our method explicitly utilizes the network
structure of the compact formulation: First, the column-generation subproblem is a shortest-path prob-
lem with additional resource and task-elementarity constraints. We show that this problem can be refor-
mulated as an ordinary shortest-path problem over an expanded network and, thus, be solved much
faster. An exact variable elimination procedure then allows the reduction of the expanded networks
while still guaranteeing optimality. Second, the compact formulation gives rise to supplemental branch-
ing rules, which are needed, since existing rules do not ensure integrality in all cases. Third, non-repeater
constraints are added dynamically to the master problem only when violated. The result is a fast exact
algorithm, which improves many lower bounds of knowingly hard TTP instances from the literature.
For some instances, solutions are proven optimal for the first time.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The traveling tournament problem is the problem of finding a
double round-robin schedule that minimizes the overall distance
traveled by all teams such that, for each team, the number of con-
secutive home stands and consecutive away games is bounded.
The TTP was introduced by Easton et al. (2001) as an artificial
sports league scheduling problem. Since then, it has attracted
numerous researchers, probably because of its fast growing
difficulty.

Formally, an even number n 2 2N of teams is given. Let
T :¼ f1;2; . . . ;ng denote the set of teams. In a single round-robin
tournament, each team t plays against each of its opponent teams
T�t :¼ T nftg once. Assuming that the tournament takes place on a
minimum number of matchdays (in the following called ‘‘time
slots”), there are n=2 games in each of the �n :¼ n� 1 time slots.
In a double round-robin tournament, each team plays against each
other team twice, once at home and once away. Consequently,
there are 2�n time slots with again n=2 games in each slot. In the fol-
lowing, the time slots S ¼ f1;2; . . . ;2�ng are indexed by s.

For each team, the sequence of consecutive games played
(home or at an opponent’s venue) implies a tour: We identify
teams and their venues and use indices i; j 2 T to refer to venues.
A tour p ¼ ði1; i2; . . . ; i2�nÞ ¼ ðisÞs2S of team t 2 T contains each oppo-
nent venue i 2 T�t exactly once (away games) and the home
venue i ¼ t exactly �n times (home games). A break occurs if a
home game is followed by another home game or if an away
game is followed by another away game, i.e., is ¼ isþ1 ¼ t or
is; isþ1 2 T�t for a time slot s < 2�n. In the TTP, the number of con-
secutive home stands and consecutive away games is bounded
by L and U, i.e., the number of consecutive breaks is bounded
by L� 1 and U � 1. Since all instances from the literature have
L ¼ 1, we solely focus on the upper bound U. Moreover, there
are (optional) no-repeater constraints (NRCs) stating that the
game t against t0 must not be followed by the return game t0

against t for any pair of teams t; t0 2 T .
The objective of the TTP is distance minimization over all teams.

Distances D ¼ ðdijÞi;j2T between the venues are assumed symmetric
and non-negative. Because each team t initially starts at home
ði0 ¼ tÞ and finally returns home ði2�nþ1 ¼ tÞ, the distance traveled
along a tour p ¼ ði1; i2; . . . ; i2�nÞ is

P2�n
s¼0dis ;isþ1 . Summing up, an in-

stance of TTP is defined by distances D ¼ ðdijÞ, an integer U, and op-
tional NRCs. The task is to compute a distance-minimal set of
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break-feasible tours that compose a double round-robin tourna-
ment (without repeater games).

The recent survey by Rasmussen and Trick (2008) devotes a full
section to the TTP and gives a comprehensive overview of state-of-
the-art approaches. While there is a large variety of metaheuristics
available (see survey), the literature on exact algorithms is scarce:
Based on the so-called independent lower bound (ILB) relaxation,
Easton et al. (2001) are able to solve TTP instances with n ¼ 4 and
n ¼ 6 teams. The same authors present in (Easton et al., 2003) a
column-generation approach for TTP without NRCs, where the sub-
problems, one for each team, consist of generating least-cost
(=reduced cost) tours. Subproblems are solved by constraint pro-
gramming (CP), and integrality of the overall solution is enforced
by branch-and-bound. A method to improve lower bounds is
presented by Urrutia et al. (2007), but (to the best of our knowl-
edge) no exact approach has been implemented based on this idea.
The special case of mirrored TTP with uniform distances is treated in
(Urrutia and Ribeiro, 2004), where instances with up to n ¼ 12
teams are solved to optimality. Cheung (2008) is able to solve small
ðn 6 8Þ mirrored TTP benchmark problems from http://mat.tep-
per.cmu.edu/TOURN (with non-constant distances) using a
two-phase approach: First, all different one-factorizations are
computed and then, for each of them, a timetable-constrained dis-
tance minimization problem is solved afterwards. Cheung (2009)
proposes a Benders decomposition approach, which improves the
lower bound for larger instances of the same type, i.e., for n be-
tween 10 and 24. It seems rather unlikely that these methods are
successfully applicable to general or larger TTP instances. This moti-
vated our research on fast exact approaches for the TTP.

This paper is structured as follows: Section 2 presents the new
compact formulation for the TTP. The proposed Dantzig-Wolfe
decomposition of this model and the resulting master and pricing
problems are derived in Section 3. Section 4 devises the corre-
sponding solution methods for the integer programming master.
Computational results are discussed in Section 5 and final conclu-
sions are drawn in Section 6.

2. Compact formulation

In integer column generation, a well-structured compact (=ori-
ginal) formulation is extremely important for devising branching
rules and adding valid inequalities to the extensive (=column-
generation) formulation (cf. Lübbecke and Desrosiers, 2005;
Spoorendonk, 2008). The basic idea of the new compact formula-
tion for the TTP is to represent the movement of each team, from
venue to venue, by a path in a time-discrete network. Fig. 1 depicts
the network for a TTP with n ¼ 4 teams. For each time slot s 2 S, a
given team t 2 T visits one of the venues i 2 T , i.e., its own home
venue or any opponent’s venue. The nodes of the network of team
t are therefore

Vt ¼ fv is : i 2 T; s 2 Sg [ fv t0;v t;2�nþ1g:

The two extra nodes v t0 and v t;2�nþ1 are source and sink. They
model the fact that team t always starts at home and returns home
at the end. The possible movements in space and time are given by
arcs ðv is; v j;sþ1Þ with the meaning that team t is traveling from ve-
nue i at time s to venue j, where the next game takes places at time
sþ 1. To lighten the notation, arcs ðv is;v j;sþ1Þ are encoded by trip-
lets ði; j; sÞ, where the set of all feasible triplets for team t is

At ¼ fðt; j; 0Þ : j 2 Tg [ fði; t;2�nÞ : i 2 Tg
[ fði; j; sÞ : i; j 2 T; ði – j or i ¼ j ¼ tÞ; s 2 S n f2�ngg

The subset Bt ¼ fði; j;sÞ 2 At : ði¼ j¼ t;s – 0;2�nÞ or i; j2 T�tg � At

represents home stands and consecutive away games and, thus,
defines the set of break arcs. Note that a home game in s¼ 1 or

s¼ 2�n does not impose a break. We use At to refer to arcs of the net-
work Nt ¼ ðVt ;AtÞ and also to index the corresponding decision
variables xt

ijs 2 f0;1g of the following compact formulation:

zttp ¼ min
X
t2T

X
ði;j;sÞ2At

dijxt
ijs ð1Þ

s:t:
X

i:ði;j;s�1Þ2At

xt
ij;s�1�

X
i:ðj;i;sÞ2At

xt
jis ¼ 0 for all t; j2 T;s2 S ð2Þ

X
s2S

X
j:ði;j;sÞ2At

xt
ijs ¼ 1 for all t 2 T; i2 T�t ð3Þ

XU�1

u¼0

X
ði;j;sþuÞ2Bt

xt
ij;sþu 6U�1 for all t 2 T;s2 S : s6 2�n�U ð4Þ

X
i2T�t

X
j:ði;j;sÞ2At

xt
ijsþ

X
t02T�t

X
j:ðt;j;sÞ2At0

xt0
tjs ¼ 1 for all t 2 T;s2 S ð5Þ

xt
ijs 2 f0;1g for all t 2 T; ði; j;sÞ 2 At ð6Þ

The objective (1) is the minimization of the overall distance
traveled by all teams. Flow conservation for each team is implied
by (2), constraints (3) state that all teams must visit all opponent
venues exactly once, and constraints (4) limit the number of con-
secutive breaks. The coupling constraints (5) are the crucial part
of the model: They guarantee that each team t plays a game in each
time slot s, either playing away against an opponent t0 (first sum)
or playing home as the opponent of another team t0 (second sum).

One advantage of this formulation is that NRCs are simple to
add: xt

tt0s þ xt0
tt0s 6 1 must hold for all t 2 T; t0 2 T�t ; s 2 S; s < 2�n. It

means that teams t and t0 are not allowed to play against each
other in consecutive time slots, first in slot s home at t, directly fol-
lowed by the return game in slot sþ 1 home at t0. By swapping the
role of t and t0 and anticipating that the four corresponding arcs are
pairwise incompatible, NRCs can be lifted to

xt
tt0s þ xt0

tt0s þ xt0
t0ts þ xt

t0ts 6 1 for all t; t0 2 T; t < t0; s 2 S; s – 2�n:

ð7Þ

These are n�nð2�n� 1Þ=2 ¼ O ðn3Þ lifted NRCs. Thus, (1)–(7) is the
compact formulation for the TTP with NRCs.

3. Extensive formulation

The extensive formulation consists of two parts: First, we briefly
state the master program, which is identical to one used in Easton
et al. (2003). The new aspect is the incorporation of the NRCs,
which are directly derived from the compact formulation pre-
sented above. Second, we discuss the structure of the subproblems.

3.1. Master problem

The application of the Dantzig–Wolfe decomposition principle
to the model (1)–(7) is straightforward: Note that the only con-
straints involving more than one team are the coupling constraints
(5) and the NRCs (7). Therefore, constraints 2, 3, 4 and (6) define
the domains of the subproblems. They decompose into n domains
and corresponding subproblems, one for each team t 2 T: Let
Pt ¼ fðxt

ijs; ði; j; sÞ 2 At: satisfying 2, 3, 4 and (6)}. The set Pt is the
set of feasible paths from source v t0 to sink v t;2�nþ1 in the network
Nt . Such a path must be break-feasible and visit each opponent ve-
nue exactly once. The cost of a tour p ¼ �xt

ijs

� �
2 Pt is

cp ¼
P
ði;j;sÞ2At dij�xt

ijs.
Easton et al. (2003) were the first to present a column-genera-

tion formulation based on the tour variables kt
p; p 2 Pt for the TTP,

but without deriving it from an original compact formulation.
We define Pt

t0s to be the subset of tours in Pt , where team t plays
away in slot s against team t0, i.e., p 2 Pt

t0s visits venue of t0 in slot
s (p touches the node v t0s). The extensive formulation is as follows:
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