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a b s t r a c t

We study a class of capacity acquisition and assignment problems with stochastic customer demands
often found in operations planning contexts. In this setting, a supplier utilizes a set of distinct facilities
to satisfy the demands of different customers or markets. Our model simultaneously assigns customers
to each facility and determines the best capacity level to operate or install at each facility. We propose a
branch-and-price solution approach for this new class of stochastic assignment and capacity planning
problems. For problem instances in which capacity levels must fall between some pre-specified limits,
we offer a tailored solution approach that reduces solution time by nearly 80% over an alternative
approach using a combination of commercial nonlinear optimization solvers. We have also developed
a heuristic solution approach that consistently provides optimal or near-optimal solutions, where solu-
tions within 0.01% of optimality are found on average without requiring a nonlinear optimization solver.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

A common problem faced by physical goods suppliers is how to
best set production capacity levels and allocate this capacity to
customer demands. Many large firms operate using several facili-
ties that are usually strategically located across a region. When
assigning customers to these facilities, we often find in practice
that the demands of each individual customer or market are fully
assigned to a single source facility. This restriction is used in order
to reduce planning coordination complexity and is often preferred
by customers who wish to have a single, consistent point of contact
for supply. Therefore, the problems we consider will incorporate
this practice of assigning each customer’s demand to a unique
source facility. In constructing such a supply network for custom-
ers, the supplier must determine which customers will be assigned
to each source facility as well as the capacity level at each facility.

For the contexts we consider, these capacity acquisition and
customer assignment decisions are fixed in the short run, and must
be determined prior to actual customer demand realizations. We
therefore face a combined capacity acquisition and assignment
problem with uncertain customer demands. The capacity and
assignment decisions are effectively made in the first stage of a

two-stage stochastic programming problem with simple recourse,
where the actual customer demand realizations determine the
resulting capacity utilization and capacity overflow costs. Our goal
is to set capacity levels and determine assignments in the network
in order to minimize expected capacity acquisition, utilization, and
capacity overflow costs. We use the term capacity generically, as
this capacity may in certain contexts refer to the capacity that
inventory provides in satisfying customer demands.

Our class of stochastic assignment problems has several applica-
tions within operations planning contexts, and we next discuss
three such problem settings. The first setting considers a product
with a single-selling season, as in the classical newsvendor model,
where the facility capacity corresponds to the aggregate inventory
acquired from an outside supplier with a long supply lead time. Each
regional distribution center in a network of facilities is therefore
allocated a stock level (the capacity) and uncertain customer (or
market) demands for the product are assigned to each facility. For
example, all customers residing in a certain subset of zip codes
may be assigned to a given distribution center for product
distribution. Our goal is to determine stock levels and customer
assignments for each facility in order to minimize expected
procurement, holding, and shortage costs across all facilities. As
we later note, our model also extends to periodic-review, infinite-
horizon distribution planning problems when customer demands
are stationary and inventory shortages result in backorders. In such
settings, because customers often prefer a consistent single-point-
of-contact or source of supply, assignments are often fixed in the
short run and cannot be dynamically varied after demand realiza-
tion in each period.
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The second application we might consider is in setting make-to-
order manufacturing capacity at production facilities who serve
the needs of multiple customers. In this context, each customer as-
signed to a facility requires utilizing some of the manufacturer’s
production capacity in each period. For example, it is not an
uncommon practice in electronics contract manufacturing for the
manufacturer to dedicate a production line at a particular facility
to certain high-value customers. The amount of capacity required
by each customer every week is a stationary random variable,
and the aggregate customer demand assigned to a facility (or pro-
duction line), along with the facility’s capacity level, determine the
weekly capacity utilization and overflow costs. As in the infinite-
horizon distribution planning problem case, customers often prefer
to receive their supply from a single source on a consistent basis,
which precludes dynamically varying supply assignments. Our
goal is to minimize manufacturing capacity acquisition plus ex-
pected capacity utilization and overflow costs across the network
of facilities.

A third potential application area is in the distribution of goods
from warehouses to retail customers via trucks. In an ongoing dis-
tribution context, each regional distribution center is allocated an
aggregate truck delivery capacity that is used for weekly scheduled
deliveries to retail customers. Retail customers, whose demands
from week to week are stochastic (but stationary) are allocated
to upstream distribution facilities. The aggregate demands of cus-
tomers assigned to a facility in each week, along with the truck
capacity at the facility, determine the expected truck utilization
costs, as well as the associated demand overflow costs. We wish
to allocate truck capacity levels to each facility while assigning re-
tail customers to facilities in order to minimize truck capacity plus
expected utilization and overflow costs.

For analytical tractability, our modeling and solution approach
rely on two important assumptions. First, we assume that facilities
within the network cannot share capacity (in an inventory stocking
and distribution context, this implies that transshipments are not
permitted). Second, we assume that when a facility’s capacity is ex-
hausted by customer demands in a period, either an outside local
emergency source is available to satisfy any overflow, or customers
are willing to wait until a later period for demand satisfaction (in
the distribution context, this implies that customers will accept
backordering). This assumption is not unreasonable in a number
of contexts, particularly in light of the many contract manufactur-
ers, third-party logistics providers, and quick response manufac-
turers that exist today. Taken together, these assumptions imply
that it is cheaper for a facility to either utilize the local emergency
outside source or delay demand satisfaction than it is to draw from
excess capacity available at other facilities in the supplier’s net-
work. These assumptions not only lead to tractable solution meth-
ods for a broad set of problems, but can also provide an effective
set of approximate models and capacity planning tools for contexts
where the assumptions may be slightly violated, i.e., where the
economics or management preferences require a high level of
product availability such that transshipments and capacity over-
flows at facilities occur infrequently. Moreover, although combined
capacity and customer assignment planning problems are not al-
ways solved simultaneously in practice, an integrated model that
concurrently determines capacity levels and customer assignments
can suggest the most efficient match between capacity and cus-
tomer demand. The model’s solution can therefore serve as a
benchmark to identify inefficient capacity levels and/or customer
assignments in practice.

The application of stochastic programming models to opera-
tions management problems has been widely studied, particularly
in recent years. For references to books and survey articles on the
subject, see Birge and Louveaux (1997), Prékopa (1995), Schultz
et al. (1996) and Sen and Higle (1999). Capacity acquisition and

allocation problems under uncertainty have been studied for many
years, using two-stage stochastic programming with recourse (see,
e.g., Mine et al., 1983; Berman et al., 1994; Eppen et al., 1989; Fine
and Freund, 1990; Swaminathan, 2000). Eppen et al. (1989) pro-
vide such a model based on actual data from the automotive indus-
try, where they set production facility capacities using a model
with scenario-based demand data (where demand levels include
pessimistic, standard, and optimistic scenarios). Fine and Freund
(1990) develop a model that determines levels of both product-
specific and flexible capacity to be allocated to the anticipated de-
mand for each of its product families. Swaminathan (2000) consid-
ers investment in capacity levels of wafer fabrication tools that can
process demand for wafers, where wafer fabrication processing
times depend on the tool to which the wafer type is assigned. Prior
work in this research stream allows splitting the processing
requirements of a task among multiple resources, which implies
that the capacity allocation problem in the second stage is a linear
program. In contrast, we require integral customer-to-facility
assignments, which leads to a more difficult class of generalized
assignment problems in the second stage.

Another rich stream of literature extends from Fine and Freund
(1990). Investing in flexible resource capacities has been studied
by Bish and Hong (2006), Bish and Wang (2004), Chod and Rudi
(2005), Netessine et al. (2002) and Van Mieghem (1998), to name
a few. Bish and Wang (2004) consider a two-product, price-setting
firm and study the structure of the firm’s optimal resource invest-
ment decision in the presence of a fully flexible resource option. In
a similar manner to Netessine et al. (2002), they account for de-
mand correlation. Their work also extends the results of Van Mieg-
hem (1998), who considers a similar setting but under
exogenously determined prices. While much of the literature con-
siders a fully flexible resource structure, where the flexible re-
source can produce all products, Bish and Hong (2006) examine
the concept of downward resource flexibility, in which resources
that can satisfy higher-level products can also be used to satisfy
the lower level products, but not vice versa.

Deterministic versions of the classical assignment problem and
the generalized assignment problem (GAP) have also been well re-
searched (see Kennington and Wang (1991) and Cattrysse and
Wassenhove (1992), respectively, for reviews of each problem, as
well as recent GAP extensions studied in Freling et al. (2003) and
Huang et al. (2005)). Only recently has the stochastic version of
the GAP received increased attention (see Albareda-Sambola et
al., 2006; Spoerl and Wood, 2003; Toktas et al., 2006). Our work
differs from past research in that nearly all of the past work on sto-
chastic assignment problems has assumed pre-determined facility
capacities.

None of the papers discussed thus far considers a combined cus-
tomer-to-facility assignment and capacity-installation problem as
we address in this paper. Ahmed and Garcia (2004) present a dy-
namic capacity acquisition and demand assignment problem that
is the most closely related to our work. As in our paper, capacity
acquisition and assignments are decision variables, and they deter-
mine fixed capacity levels within which the firm will operate. They
also require all demand-to-facility assignments to be integer (sin-
gle sourcing), whereas past work cited on capacity expansion and
allocation allowed fractional assignments. In contrast to our work,
however, they allow demand assignments to be made after actual
demands are realized in each period, as might occur in a make-to-
order context. We require customer-to-facility assignments to be
first-stage decisions that cannot be altered in the short run, as
would be the case when customers require short delivery lead
times subsequent to order placement. Our approach also applies
to situations in which customers place orders periodically to sup-
ply facilities subsequent to capacity installation, when the se-
quence of each customer’s demands corresponds to a stationary
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