

Available online at www.sciencedirect.com

Applied Catalysis B: Environmental 80 (2008) 343-352

www.elsevier.com/locate/apcatb

Impact of redox conditions on thermal deactivation of NO_x traps for diesel

Karen M. Adams^{*}, George W. Graham¹

Chemical Engineering Department, Research and Advanced Engineering, Ford Motor Company, Research & Innovation Center, Mail Drop 3179, Dearborn, MI 48121-2053, USA

> Received 18 July 2006; received in revised form 13 November 2007; accepted 14 November 2007 Available online 3 December 2007

Abstract

Performance of NO_x traps after high-temperature treatments in different redox environments was studied. Two types of treatments were considered: aging and pretreatment. Lean and rich agings were examined for a model NO_x trap, Pt–Ba/Al₂O₃. These were done at 950 °C for 3 h, in air and in 1% H₂/N₂, respectively. Lean aging had a severe impact on NO_x trap performance, including HC and CO oxidation, and NH₃ and N₂O formation. Rich aging had minimal impact on performance, compared to fresh/degreened performance. Deactivation from lean aging was essentially irreversible due to Pt sintering, but Pt remained dispersed with the rich aging. Pretreatments were examined for a commercially feasible fully formulated NO_x trap and two model NO_x traps, Pt–Ba/Al₂O₃ and Pt–Ba–Ce/Al₂O₃. Pretreatments were done at 600 °C for 10 min, and used feed gas that simulated diesel exhaust under several conditions. Lean pretreatment severely suppressed NO_x, HC, CO, NH₃ and N₂O activities for the ceria-containing NO_x traps, but had no impact on Pt–Ba/Al₂O₃. Subsequently, a relatively mild rich pretreatment reversed this deactivation, which appears to be due to a form of Pt–ceria interaction, an effect that is well known from early work on three-way catalysts. Practical applications of results of this work are discussed with respect to NO_x traps for light-duty diesel vehicles. © 2008 Karen M. Adams. Published by Elsevier B.V. All rights reserved.

Keywords: NO_x storage; NO_x reduction; Pt-Ba/Al₂O₃; Pt-Ba-Ce/Al₂O₃; Ceria; Thermal deactivation

1. Introduction

Diesel and lean-burn gasoline engines are considered attractive alternatives to conventional gasoline to improve fuel economy and reduce CO_2 emissions for light duty vehicles. A major challenge is abatement of NO_x (NO + NO₂) emissions. This is difficult in the O₂-rich exhaust of lean-burn engines. Lean NO_x traps have been an important aftertreatment technology under development to address this [1–3]. Recently, NO_x traps have been produced for lean burn gasoline passenger cars, but this application is limited. A key obstacle in the way of more widespread implementation of NO_x traps is durability. This is particularly the case for diesel vehicles. They require high NO_x conversion at lower temperature than that needed for

* Corresponding author.

lean-burn gasoline, for example, $\sim 150-300$ °C for diesel compared to $\sim 300-600$ °C for gasoline. NO_x trap activity at the lower temperatures is particularly sensitive to catalyst deactivation.

One source of deactivation is sulfur [4,5]. Vehicle exhaust contains low levels (ppm) of SO₂. This is derived primarily from combustion of organic sulfur contaminants in fuel. Sulfates accumulate on NO_x storage sites, and degrade performance. Periodically, sulfate is purged from the trap to restore NO_x performance. Sulfate purging (deSO_x) as well as the more frequent NO_x purging (deNO_x) is accomplished by running the engine rich, however, much higher temperatures are needed for deSO_x. For example, ~600–750 °C is typical for deSO_x, where normal operating temperatures are sufficient for deNO_x. In addition, a deSO_x event requires longer time, 5–10 min, compared to a few seconds for a deNO_x event.

Another source of deactivation is thermal, which is the subject of this work. In particular, we examined effects of feed gas redox character during high temperature on NO_x trap

E-mail address: kadams2@ford.com (K.M. Adams).

¹ Current address: Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA.

Pretreatment Evaluation Protocol

Fig. 1. Pretreatment evaluation procedure.

performance. We evaluated effects of aging, as well as shorterterm high-temperature exposure. In diesel applications, NO_x traps require high temperature for sulfate purging, as described above, and for regeneration of a downstream soot filter. The former requires a reducing (rich) environment, and the latter an oxidizing (lean) environment. Practical implications of this work are discussed.

2. Experimental

2.1. NO_x trap samples

Two model NO_x traps and one fully formulated NO_x trap, all prepared by a commercial catalyst supplier, were examined. Both model traps contained Pt and BaCO₃ supported on γ -Al₂O₃. One also contained ceria (CeO₂). These two model traps will be referred to as Pt–Ba/Al₂O₃ and Pt–Ba–Ce/Al₂O₃. The fully formulated trap contained Pt, BaCO₃ and ceria on γ -Al₂O₃, however, its entire composition is proprietary. This trap will be referred to as supplier formulated, or simply supplier. All NO_x traps were provided as washcoated cordierite monoliths with 400 cells/in.². Their Pt loadings were ~100 g/ft³.

Table 1 Simulated diesel exhaust gas composition used for NO_x trap activity evaluations

Feed gas components	Lean concentrations	Rich concentrations
NO _x	500 ppm	500 ppm
C ₃ H ₆	100 ppm	1650 ppm
CO	500 ppm	4.0%
H ₂	167 ppm	1.3%
O ₂	10%	1%
CO ₂	5%	5%
H ₂ O	5%	5%
N ₂	Balance	Balance

2.2. Activity testing

An integral flow reactor was used to measure NO_x trap activity. NO_x trap test samples were (3/4) in. diameter × 3 in. long monolith cores cut from larger sample bricks. The reactor had a quartz flow tube in which a test sample was placed. Thermocouples were located in the feed gas ((3/4) in. before the sample inlet) and in the sample (1 in. behind the inlet face). Temperature was controlled primarily with a large tube furnace (29 in. long) that surrounded the flow tube. The sample zone was isothermal with $\Delta T < 10$ °C at 600 °C. The flow tube had a bypass line to allow measurement of inlet concentrations for the feed gas components. Feed gas was a simulated diesel exhaust gas mixture. Typical diesel exhaust is lean (O₂-rich), however, NO_x traps periodically require rich exhaust to release and reduce stored NO_x. Compositions for the lean and rich feed gas mixtures are described in Table 1.

Activity data were collected over a temperature range of 150–600 °C, measured at the sample inlet. Temperature was ramped at 10 °C/min. Space velocity was 30,000/h. Feed gas composition was cycled between lean and rich, 25 and 5 s, respectively, which is called 25–5. FTIR was used to measure NO, NO₂, NH₃, N₂O, C₃H₆, and CO concentrations. Its pathlength was 3.25 m. Resolution was 0.5 cm⁻¹. The FTIR gas cell was ~150 cm³ in volume, and gas flow was ~3 l/min. Measurement frequency was ~1 Hz. Conversions for NO_x, HC and CO were calculated as [($C_{\text{inlet}} - C_{\text{outlet}}$)/ C_{inlet}] × 100%, where *C* is concentration averaged over one 25–5 cycle. Formation for NH₃ and N₂O were calculated as [$C_{\text{outlet}}^{\text{NH}_3}/C_{\text{inlet}}^{\text{NO}_x}$] × 100% and [$2C_{\text{outlet}}^{\text{NO}_x}/C_{\text{inlet}}^{\text{NO}_x}$] × 100%, respectively.

Degreening was performed on all samples, fresh and aged, prior to activity testing. Samples were degreened in the flow reactor by holding inlet temperature at 600 $^{\circ}$ C for 0.5–1 h. Feed gas was cycled at 25–5, which was also performed during heating and cooling.

Download English Version:

https://daneshyari.com/en/article/48250

Download Persian Version:

https://daneshyari.com/article/48250

Daneshyari.com